Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

Application of deep-learning-based artificial intelligence in acetabular index measurement.

In Frontiers in pediatrics

OBJECTIVE : To construct an artificial intelligence system to measure acetabular index and evaluate its accuracy in clinical application.

METHODS : A total of 10,219 standard anteroposterior pelvic radiographs were collected retrospectively from April 2014 to December 2018 in our hospital. Of these, 9,219 radiographs were randomly selected to train and verify the system. The remaining 1,000 radiographs were used to compare the system's and the clinicians' measurement results. All plain pelvic films were labeled by an expert committee through PACS system based on a uniform standard to measure acetabular index. Subsequently, eight other clinicians independently measured the acetabular index from 200 randomly selected radiographs from the test radiographs. Bland-Altman test was used for consistency analysis between the system and clinician measurements.

RESULTS : The test set included 1,000 cases (2,000 hips). Compared with the expert committee measurement, the 95% limits of agreement (95% LOA) of the system was -4.02° to 3.45° (bias = -0.27°, P < 0.05). The acetabular index measured by the system within all age groups, including normal and abnormal groups, also showed good credibility according to the Bland-Altman principle. Comparison of the measurement evaluations by the system and eight clinicians vs. that of, the expert committee, the 95% LOA of the clinician with the smallest measurement error was -2.76° to 2.56° (bias = -0.10°, P = 0.126). The 95% LOA of the system was -0.93° to 2.86° (bias = -0.03°, P = 0.647). The 95% LOA of the clinician with the largest measurement error was -3.41° to 4.25° (bias = 0.42°, P < 0.05). The measurement error of the system was only greater than that of a senior clinician.

CONCLUSION : The newly constructed artificial intelligence system could quickly and accurately measure the acetabular index of standard anteroposterior pelvic radiographs. There is good data consistency between the system in measuring standard anteroposterior pelvic radiographs. The accuracy of the system is closer to that of senior clinicians.

Wu Qingjie, Ma Hailong, Sun Jun, Liu Chuanbin, Fang Jihong, Xie Hongtao, Zhang Sicheng


DDH, acetabular index, artificial intelligence - AI, child, deep learning

General General

Real-time face mask position recognition system based on MobileNet model.

In Smart health (Amsterdam, Netherlands)

COVID-19 is a highly contagious disease that was first identified in 2019, and has since taken more than six million lives world wide till date, while also causing considerable economic, social, cultural and political turmoil. As a way to limit its spread, the World Health Organization and medical experts have advised properly wearing face masks, social distancing and hand sanitization, besides vaccination. However, people wear masks sometimes uncovering their mouths and/or noses consciously or unconsciously, thereby lessening the effectiveness of the protection they provide. A system capable of automatic recognition of face mask position could alert and ensure that an individual is wearing a mask properly before entering a crowded public area and putting themselves and others at risk. We first develop and publicly release a dataset of face mask images, which are collected from 391 individuals of different age groups and gender. Then, we study six different architectures of pre-trained deep learning models, and finally propose a model developed by fine tuning the pre-trained state of the art MobileNet model. We evaluate the performance (accuracy, F1-score, and Cohen's Kappa) of this model on the proposed dataset and MaskedFace-Net, a publicly available synthetic dataset created by image editing. Its performance is also compared to other existing methods. The proposed MobileNet is found as the best model providing an accuracy, F1-score, and Cohen's Kappa of 99.23%, 99.22%, and 99.19%, respectively for face mask position recognition. It outperforms the accuracy of the best existing model by about 2%. Finally, an automatic face mask position recognition system has been developed, which can recognize if an individual is wearing a mask correctly or incorrectly. The proposed model performs very well with no drop in recognition accuracy from real images captured by a camera.

Rahman Md Hafizur, Jannat Mir Kanon Ara, Islam Md Shafiqul, Grossi Giuliano, Bursic Sathya, Aktaruzzaman Md


COVID-19, Dataset, Face-mask position recognition, MobileNet, Real-time, Transfer learning

General General

Developing a music-based digital therapeutic to help manage the neuropsychiatric symptoms of dementia.

In Frontiers in digital health

The greying of the world is leading to a rapid acceleration in both the healthcare costs and caregiver burden that are associated with dementia. There is an urgent need to develop new, easily scalable modalities of support. This perspective paper presents the theoretical background, rationale, and development plans for a music-based digital therapeutic to manage the neuropsychiatric symptoms of dementia, particularly agitation and anxiety. We begin by presenting the findings of a survey we conducted with key opinion leaders. The findings highlight the value of a music-based digital therapeutic for treating neuropsychiatric symptoms, particularly agitation and anxiety. We then consider the neural substrates of these neuropsychiatric symptoms before going on to evaluate randomized control trials on the efficacy of music-based interventions in their treatment. Finally, we present our development plans for the adaptation of an existing music-based digital therapeutic that was previously shown to be efficacious in the treatment of adult anxiety symptoms.

Russo Frank A, Mallik Adiel, Thomson Zoe, de Raadt St James Alexander, Dupuis Kate, Cohen Dan


agitation, anxiety, artificial intelligence, dementia, digital therapeutics, music, neuropsychiatric symptoms

General General

A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models.

In Journal of real-time image processing

As seen in the COVID-19 pandemic, one of the most important measures is physical distance in viruses transmitted from person to person. According to the World Health Organization (WHO), it is mandatory to have a limited number of people in indoor spaces. Depending on the size of the indoors, the number of persons that can fit in that area varies. Then, the size of the indoor area should be measured and the maximum number of people should be calculated accordingly. Computers can be used to ensure the correct application of the capacity rule in indoors monitored by cameras. In this study, a method is proposed to measure the size of a prespecified region in the video and count the people there in real time. According to this method: (1) predetermining the borders of a region on the video, (2) identification and counting of people in this specified region, (3) it is aimed to estimate the size of the specified area and to find the maximum number of people it can take. For this purpose, the You Only Look Once (YOLO) object detection model was used. In addition, Microsoft COCO dataset pre-trained weights were used to identify and label persons. YOLO models were tested separately in the proposed method and their performances were analyzed. Mean average precision (mAP), frame per second (fps), and accuracy rate metrics were found for the detection of persons in the specified region. While the YOLO v3 model achieved the highest value in accuracy rate and mAP (both 0.50 and 0.75) metrics, the YOLO v5s model achieved the highest fps rate among non-Tiny models.

Gündüz Mehmet Şirin, Işık Gültekin


Area estimation, Deep learning, People counting, Person detection, Real-time video processing, YOLO

Ophthalmology Ophthalmology

Evaluating the utility of deep learning for predicting therapeutic response in diabetic eye disease.

In Frontiers in ophthalmology

PURPOSE : Deep learning (DL) is a technique explored within ophthalmology that requires large datasets to distinguish feature representations with high diagnostic performance. There is a need for developing DL approaches to predict therapeutic response, but completed clinical trial datasets are limited in size. Predicting treatment response is more complex than disease diagnosis, where hallmarks of treatment response are subtle. This study seeks to understand the utility of DL for clinical problems in ophthalmology such as predicting treatment response and where large sample sizes for model training are not available.

MATERIALS AND METHODS : Four DL architectures were trained using cross-validated transfer learning to classify ultra-widefield angiograms (UWFA) and fluid-compartmentalized optical coherence tomography (OCT) images from a completed clinical trial (PERMEATE) dataset (n=29) as tolerating or requiring extended interval Anti-VEGF dosing. UWFA images (n=217) from the Anti-VEGF study were divided into five increasingly larger subsets to evaluate the influence of dataset size on performance. Class activation maps (CAMs) were generated to identify regions of model attention.

RESULTS : The best performing DL model had a mean AUC of 0.507 ± 0.042 on UWFA images, and highest observed AUC of 0.503 for fluid-compartmentalized OCT images. DL had a best performing AUC of 0.634 when dataset size was incrementally increased. Resulting CAMs show inconsistent regions of interest.

CONCLUSIONS : This study demonstrated the limitations of DL for predicting therapeutic response when large datasets were not available for model training. Our findings suggest the need for hand-crafted approaches for complex and data scarce prediction problems in ophthalmology.

Dong Vincent, Sevgi Duriye Damla, Kar Sudeshna Sil, Srivastava Sunil K, Ehlers Justis P, Madabhushi Anant


deep learning, diabetic macular edema, diabetic retinopathy, optical coherence tomography, transfer learning, ultra-widefield fluorescein angiography

Cardiology Cardiology

Detection of colorectal adenomas using artificial intelligence models in patients with chronic hepatitis C.

In World journal of hepatology ; h5-index 53.0

BACKGROUND : Hepatitis C virus is known for its oncogenic potential, especially in hepatocellular carcinoma and non-Hodgkin lymphoma. Several studies have shown that chronic hepatitis C (CHC) has an increased risk of the development of colorectal cancer (CRC).

AIM : To analyze this positive relationship and develop an artificial intelligence (AI)-based tool using machine learning (ML) algorithms to stratify these patient populations into risk groups for CRC/adenoma detection.

METHODS : To develop the AI automated calculator, we applied ML to train models to predict the probability and the number of adenomas detected on colonoscopy. Data sets were split into 70:30 ratios for training and internal validation. The Scikit-learn standard scaler was used to scale values of continuous variables. Colonoscopy findings were used as the gold standard and deep learning architecture was used to train six ML models for prediction. A Flask (customizable Python framework) application programming interface (API) was used to deploy the trained ML model with the highest accuracy as a web application. Finally, Heroku was used for the deployment of the web-based API to

RESULTS : Of 415 patients, 206 had colonoscopy results. On internal validation, the Bernoulli naive Bayes model predicted the probability of adenoma detection with the highest accuracy of 56%, precision of 55%, recall of 55%, and F1 measure of 54%. Support vector regressor predicted the number of adenomas with the least mean absolute error of 0.905.

CONCLUSION : Our AI-based tool can help providers stratify patients with CHC for early referral for screening colonoscopy. Along with providing a numerical percentage, the calculator can also comment on the number of adenomatous polyps a gastroenterologist can expect, prompting a higher adenoma detection rate.

Singh Yuvaraj, Gogtay Maya, Yekula Anuroop, Soni Aakriti, Mishra Ajay Kumar, Tripathi Kartikeya, Abraham G M


Artificial intelligence, Calculator, Hepatitis C, Machine learning, Screening