Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections.

In Frontiers in bioengineering and biotechnology

Chronic wound infections represent a significant burden to healthcare providers globally. Often, chronic wound healing is impeded by the presence of infection within the wound or wound bed. This can result in an increased healing time, healthcare cost and poor patient outcomes. Thus, there is a need for dressings that help the wound heal, in combination with early detection of wound infections to support prompt treatment. In this study, we demonstrate a novel, biocompatible wound dressing material, based on Polyhydroxyalkanoates, doped with graphene platelets, which can be used as an electrochemical sensing substrate for the detection of a common wound pathogen, Pseudomonas aeruginosa. Through the detection of the redox active secondary metabolite, pyocyanin, we demonstrate that a dressing can be produced that will detect the presence of pyocyanin across clinically relevant concentrations. Furthermore, we show that this sensor can be used to identify the presence of pyocyanin in a culture of P. aeruginosa. Overall, the sensor substrate presented in this paper represents the first step toward a new dressing with the capacity to promote wound healing, detect the presence of infection and release antimicrobial drugs, on demand, to optimized healing.

Ward Andrew C, Dubey Prachi, Basnett Pooja, Lika Granit, Newman Gwenyth, Corrigan Damion K, Russell Christopher, Kim Jongrae, Chakrabarty Samit, Connolly Patricia, Roy Ipsita

2020

Polyhydroxyalkanoates, Pseudomonas aeruginosa, artificial intelligence, biopolymer, electrochemical, graphene, pyocyanin, wound dressing

General General

Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception.

In Frontiers in bioengineering and biotechnology

Microscopic image analysis plays a significant role in initial leukemia screening and its efficient diagnostics. Since the present conventional methodologies partly rely on manual examination, which is time consuming and depends greatly on the experience of domain experts, automated leukemia detection opens up new possibilities to minimize human intervention and provide more accurate clinical information. This paper proposes a novel approach based on conventional digital image processing techniques and machine learning algorithms to automatically identify acute lymphoblastic leukemia from peripheral blood smear images. To overcome the greatest challenges in the segmentation phase, we implemented extensive pre-processing and introduced a three-phase filtration algorithm to achieve the best segmentation results. Moreover, sixteen robust features were extracted from the images in the way that hematological experts do, which significantly increased the capability of the classifiers to recognize leukemic cells in microscopic images. To perform the classification, we applied two traditional machine learning classifiers, the artificial neural network and the support vector machine. Both methods reached a specificity of 95.31%, and the sensitivity of the support vector machine and artificial neural network reached 98.25 and 100%, respectively.

Bodzas Alexandra, Kodytek Pavel, Zidek Jan

2020

acute leukemia, automated leukemia detection, blood smear image analysis, cell segmentation, image processing, leukemic cell identification, machine learning

General General

Exploring the Contribution of Proprioceptive Reflexes to Balance Control in Perturbed Standing.

In Frontiers in bioengineering and biotechnology

Humans control balance using different feedback loops involving the vestibular system, the visual system, and proprioception. In this article, we focus on proprioception and explore the contribution of reflexes based on force and length feedback to standing balance. In particular, we address the questions of how much proprioception alone could explain balance control, and whether one modality, force or length feedback, is more important than the other. A sagittal plane neuro-musculoskeletal model was developed with six degrees of freedom and nine muscles in each leg. A controller was designed using proprioceptive reflexes and a dead zone. No feedback control was applied inside the dead zone. Reflexes were active once the center of mass moved outside the dead zone. Controller parameters were found by solving an optimization problem, where effort was minimized while the neuro-musculoskeletal model should remain standing upright on a perturbed platform. The ground was perturbed with random square pulses in the sagittal plane with different amplitudes and durations. The optimization was solved for three controllers: using force and length feedback (base model), using only force feedback, and using only length feedback. Simulations were compared to human data from previous work, where an experiment with the same perturbation signal was performed. The optimized controller yielded a similar posture, since average joint angles were within 5 degrees of the experimental average joint angles. The joint angles of the base model, the length only model, and the force only model correlated weakly (ankle) to moderately with the experimental joint angles. The ankle moment correlated weakly to moderately with the experimental ankle moment, while the hip and knee moment were only weakly correlated, or not at all. The time series of the joint angles showed that the length feedback model was better able to explain the experimental joint angles than the force feedback model. Changes in time delay affected the correlation of the joint angles and joint moments. The objective of effort minimization yielded lower joint moments than in the experiment, suggesting that other objectives are also important in balance control, which cause an increase in effort and thus larger joint moments.

Koelewijn Anne D, Ijspeert Auke J

2020

balance control, neuromusculoskeletal simulation, perturbed standing, proprioception, reflexes

General General

Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks.

In Frontiers in pediatrics

Non-invasive fetal electrocardiography represents a valuable alternative continuous fetal monitoring method that has recently received considerable attention in assessing fetal health. However, the non-invasive fetal electrocardiogram (ECG) is typically severely contaminated by a considerable amount of various noise sources, rendering fetal ECG denoising a very challenging task. This work employs a deep learning approach for removing the residual noise from multi-channel fetal ECG after the maternal ECG has been suppressed. We propose a deep convolutional encoder-decoder network with symmetric skip-layer connections, learning end-to-end mappings from noise-corrupted fetal ECG signals to clean ones. Experiments on simulated data show an average signal-to-noise ratio (SNR) improvement of 9.5 dB for fetal ECG signals with input SNR ranging between -20 and 20 dB. The method is additionally evaluated on a large set of real signals, demonstrating that it can provide significant quality improvement of the noisy fetal ECG signals. We further show that employment of multi-channel signal information by the network provides superior and more reliable performance as opposed to its single-channel network counterpart. The presented method is able to preserve beat-to-beat morphological variations and does not require any prior information on the power spectra of the noise or the pulse location.

Fotiadou Eleni, Vullings Rik

2020

convolutional neural networks, encoder-decoder network, fetal ECG denoising, fetal ECG enhancement, fetal electrocardiography

Radiology Radiology

Deep Learning-Based Radiomics of B-Mode Ultrasonography and Shear-Wave Elastography: Improved Performance in Breast Mass Classification.

In Frontiers in oncology

Objective : Shear-wave elastography (SWE) can improve the diagnostic specificity of the B-model ultrasonography (US) in breast cancer. However, whether deep learning-based radiomics signatures based on the B-mode US (B-US-RS) or SWE (SWE-RS) could further improve the diagnostic performance remains to be investigated. We aimed to develop the B-US-RS and SWE-RS and determine their performances in classifying breast masses.

Materials and Methods : This retrospective study included 291 women (mean age ± standard deviation, 40.9 ± 12.3 years) from two centers who had US-visible solid breast masses and underwent biopsy and/or surgical resection between June 2015 and July 2017. B-mode US and SWE images of the 198 masses in 198 patients (training cohort) from center 1 were segmented, respectively, to construct B-US-RS and SWE-RS using the least absolute shrinkage and selection operator regression and tested in an independent validation cohort of 65 masses in 65 patients from center 1 and in an external validation cohort of 28 masses in 28 patients from center 2. The performances of B-US-RS and SWE-RS were assessed using receiver operating characteristic (ROC) analysis and compared with that of radiologist assessment [Breast Imaging Reporting and Data System (BI-RADS)] and quantitative SWE parameters [maximum elasticity (Emax), mean elasticity (Emean), elasticity ratio (Eratio), and elastic modulus standard deviation (ESD)] by using the McNemar test.

Results : The single best-performing quantitative SWE parameter, Emax, had a higher specificity than BI-RADS assessment in the training and independent validation cohorts (P < 0.001 for both). The areas under the ROC curves (AUCs) of B-US-RS and SWE-RS both were 0.99 (95% CI = 0.99-1.00) in the training cohort, 1.00 (95% CI = 1.00-1.00) in the independent validation cohort, and 1.00 (95% CI = 1.00-1.00) in the external validation cohort. The specificities of B-US-RS and SWE-RS were higher than that of Emax in the training (P < 0.001 for both) and independent validation cohorts (P = 0.02 for both).

Conclusion : The B-US-RS and SWE-RS outperformed the quantitative SWE parameters and BI-RADS assessment for classifying breast masses. The integration of the deep learning-based radiomics approach would help improve the classification ability of B-mode US and SWE for breast masses.

Zhang Xiang, Liang Ming, Yang Zehong, Zheng Chushan, Wu Jiayi, Ou Bing, Li Haojiang, Wu Xiaoyan, Luo Baoming, Shen Jun

2020

breast neoplasms, deep learning, radiomics, shear-wave elastography, ultrasonography

General General

Artificial Intelligence and Computational Approaches for Epilepsy.

In Journal of epilepsy research

Studies on treatment of epilepsy have been actively conducted in multiple avenues, but there are limitations in improving its efficacy due to between-subject variability in which treatment outcomes vary from patient to patient. Accordingly, there is a growing interest in precision medicine that provides accurate diagnosis for seizure types and optimal treatment for an individual epilepsy patient. Among these approaches, computational studies making this feasible are rapidly progressing in particular and have been widely applied in epilepsy. These computational studies are being conducted in two main streams: 1) artificial intelligence-based studies implementing computational machines with specific functions, such as automatic diagnosis and prognosis prediction for an individual patient, using machine learning techniques based on large amounts of data obtained from multiple patients and 2) patient-specific modeling-based studies implementing biophysical in-silico platforms to understand pathological mechanisms and derive the optimal treatment for each patient by reproducing the brain network dynamics of the particular patient per se based on individual patient's data. These computational approaches are important as it can integrate multiple types of data acquired from patients and analysis results into a single platform. If these kinds of methods are efficiently operated, it would suggest a novel paradigm for precision medicine.

An Sora, Kang Chaewon, Lee Hyang Woon

2020-Jun

Artificial intelligence, Epilepsy, Patient-specific modeling, Precision medicine, Seizures