Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

Public Health Public Health

Blood Inflammatory Biomarkers Differentiate Inpatient and Outpatient Coronavirus Disease 2019 From Influenza.

In Open forum infectious diseases

BACKGROUND : The ongoing circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a diagnostic challenge because symptoms of coronavirus disease 2019 (COVID-19) are difficult to distinguish from other respiratory diseases. Our goal was to use statistical analyses and machine learning to identify biomarkers that distinguish patients with COVID-19 from patients with influenza.

METHODS : Cytokine levels were analyzed in plasma and serum samples from patients with influenza and COVID-19, which were collected as part of the Centers for Disease Control and Prevention's Hospitalized Adult Influenza Vaccine Effectiveness Network (inpatient network) and the US Flu Vaccine Effectiveness (outpatient network).

RESULTS : We determined that interleukin (IL)-10 family cytokines are significantly different between COVID-19 and influenza patients. The results suggest that the IL-10 family cytokines are a potential diagnostic biomarker to distinguish COVID-19 and influenza infection, especially for inpatients. We also demonstrate that cytokine combinations, consisting of up to 3 cytokines, can distinguish SARS-CoV-2 and influenza infection with high accuracy in both inpatient (area under the receiver operating characteristics curve [AUC] = 0.84) and outpatient (AUC = 0.81) groups, revealing another potential screening tool for SARS-CoV-2 infection.

CONCLUSIONS : This study not only reveals prospective screening tools for COVID-19 infections that are independent of polymerase chain reaction testing or clinical condition, but it also emphasizes potential pathways involved in disease pathogenesis that act as potential targets for future mechanistic studies.

Luciani Lauren L, Miller Leigh M, Zhai Bo, Clarke Karen, Hughes Kramer Kailey, Schratz Lucas J, Balasubramani G K, Dauer Klancie, Nowalk M Patricia, Zimmerman Richard K, Shoemaker Jason E, Alcorn John F

2023-Mar

SARS-CoV-2, cytokine, human, machine learning, pneumonia

Radiology Radiology

Predictive factors for degenerative lumbar spinal stenosis: a model obtained from a machine learning algorithm technique.

In BMC musculoskeletal disorders ; h5-index 46.0

BACKGROUND : Degenerative lumbar spinal stenosis (DLSS) is the most common spine disease in the elderly population. It is usually associated with lumbar spine joints/or ligaments degeneration. Machine learning technique is an exclusive method for handling big data analysis; however, the development of this method for spine pathology is rare. This study aims to detect the essential variables that predict the development of symptomatic DLSS using the random forest of machine learning (ML) algorithms technique.

METHODS : A retrospective study with two groups of individuals. The first included 165 with symptomatic DLSS (sex ratio 80 M/85F), and the second included 180 individuals from the general population (sex ratio: 90 M/90F) without lumbar spinal stenosis symptoms. Lumbar spine measurements such as vertebral or spinal canal diameters from L1 to S1 were conducted on computerized tomography (CT) images. Demographic and health data of all the participants (e.g., body mass index and diabetes mellitus) were also recorded.

RESULTS : The decision tree model of ML demonstrate that the anteroposterior diameter of the bony canal at L5 (males) and L4 (females) levels have the greatest stimulus for symptomatic DLSS (scores of 1 and 0.938). In addition, combination of these variables with other lumbar spine features is mandatory for developing the DLSS.

CONCLUSIONS : Our results indicate that combination of lumbar spine characteristics such as bony canal and vertebral body dimensions rather than the presence of a sole variable is highly associated with symptomatic DLSS onset.

Abbas Janan, Yousef Malik, Peled Natan, Hershkovitz Israel, Hamoud Kamal

2023-Mar-23

Computer Tomography, Degenerative lumbar spinal stenosis, Machine learning, Spine dimensions

General General

A study on predicting the length of hospital stay for Chinese patients with ischemic stroke based on the XGBoost algorithm.

In BMC medical informatics and decision making ; h5-index 38.0

BACKGROUND : The incidence of stroke is a challenge in China, as stroke imposes a heavy burden on families, national health services, social services, and the economy. The length of hospital stay (LOS) is an essential indicator of utilization of medical services and is usually used to assess the efficiency of hospital management and patient quality of care. This study established a prediction model based on a machine learning algorithm to predict ischemic stroke patients' LOS.

METHODS : A total of 18,195 ischemic stroke patients' electronic medical records and 28 attributes were extracted from electronic medical records in a large comprehensive hospital in China. The prediction of LOS was regarded as a multi classification problem, and LOS was divided into three categories: 1-7 days, 8-14 days and more than 14 days. After preprocessing the data and feature selection, the XGBoost algorithm was used to build a machine learning model. Ten fold cross-validation was used for model validation. The accuracy (ACC), recall rate (RE) and F1 measure were used to evaluate the performance of the prediction model of LOS of ischemic stroke patients. Finally, the XGBoost algorithm was used to identify and remove irrelevant features by ranking all attributes based on feature importance.

RESULTS : Compared with the naive Bayesian algorithm, logistic region algorithm, decision tree classifier algorithm and ADaBoost classifier algorithm, the XGBoot algorithm has higher ACC, RE and F1 measure. The average ACC, RE and F1 measure were 0.89, 0.89 and 0.89 under the 10-fold cross-validation. According to the analysis of the importance of features, the LOS of ischemic stroke patients was affected by demographic characteristics, past medical history, admission examination features, and operation characteristics. Finally, the features in terms of hemiplegia aphasia, MRS, NIHSS, TIA, Operation or not, coma index etc. were found to be the top features in importance in predicting the LOS of ischemic stroke patients.

CONCLUSIONS : The XGBoost algorithm was an appropriate machine learning method for predicting the LOS of patients with ischemic stroke. Based on the prediction model, an intelligent medical management prediction system could be developed to predict the LOS based on ischemic stroke patients' electronic medical records.

Chen Rui, Zhang Shengfa, Li Jie, Guo Dongwei, Zhang Weijun, Wang Xiaoying, Tian Donghua, Qu Zhiyong, Wang Xiaohua

2023-Mar-22

Ischemic stroke, Length of hospital stay (LOS), Machine learning (ML) model, XGBoost algorithm

General General

Automated Adolescence Scoliosis Detection Using Augmented U-Net With Non-square Kernels.

In Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes

Purpose: Scoliosis is a deformity of the spine, and as a measure of scoliosis severity, Cobb angle is fundamental to the diagnosis of deformities that require treatment. Conventional Cobb angle measurement and assessment is usually done manually, which is inherently time-consuming, and associated with high inter- and intra-observer variability. While there exist automatic scoliosis measurement methods, they suffer from insufficient accuracy. In this work, we propose a two-step segmentation-based deep learning architecture to automate Cobb angle measurement for scoliosis assessment using X-Ray images. Methods: The proposed architecture involves two steps. In the first step, we utilize a novel Augmented U-Net architecture to generate segmentations of vertebrae. The second step includes a non-learning-based pipeline to extract landmark coordinates from the segmented vertebrae and filter undesirable landmarks. Results: Our proposed Augmented U-Net architecture achieved a Symmetric Mean Absolute Percentage Error of 9.2%, with approximately 90% of estimations having less than 10 degrees difference compared with the AASCE-MICCAI challenge 2019 dataset ground truths. We further validated the model using an internal dataset and achieved almost the same level of performance. Conclusion: The proposed architecture is robust in providing automated spinal vertebrae segmentations and Cobb angle measurement, and is potentially generalizable to real-world clinical settings.

Wu Yujie, Namdar Khashayar, Chen Chaojun, Hosseinpour Shahob, Shroff Manohar, Doria Andrea S, Khalvati Farzad

2023-Mar-22

Cobb angle, convolutional neural network, scoliosis, vertebra landmark

General General

MSLP: mRNA subcellular localization predictor based on machine learning techniques.

In BMC bioinformatics

BACKGROUND : Subcellular localization of messenger RNA (mRNAs) plays a pivotal role in the regulation of gene expression, cell migration as well as in cellular adaptation. Experiment techniques for pinpointing the subcellular localization of mRNAs are laborious, time-consuming and expensive. Therefore, in silico approaches for this purpose are attaining great attention in the RNA community.

METHODS : In this article, we propose MSLP, a machine learning-based method to predict the subcellular localization of mRNA. We propose a novel combination of four types of features representing k-mer, pseudo k-tuple nucleotide composition (PseKNC), physicochemical properties of nucleotides, and 3D representation of sequences based on Z-curve transformation to feed into machine learning algorithm to predict the subcellular localization of mRNAs.

RESULTS : Considering the combination of the above-mentioned features, ennsemble-based models achieved state-of-the-art results in mRNA subcellular localization prediction tasks for multiple benchmark datasets. We evaluated the performance of our method  in ten subcellular locations, covering cytoplasm, nucleus, endoplasmic reticulum (ER), extracellular region (ExR), mitochondria, cytosol, pseudopodium, posterior, exosome, and the ribosome. Ablation study highlighted k-mer and PseKNC to be more dominant than other features for predicting cytoplasm, nucleus, and ER localizations. On the other hand, physicochemical properties and Z-curve based features contributed the most to ExR and mitochondria detection. SHAP-based analysis revealed the relative importance of features to provide better insights into the proposed approach.

AVAILABILITY : We have implemented a Docker container and API for end users to run their sequences on our model. Datasets, the code of API and the Docker are shared for the community in GitHub at: https://github.com/smusleh/MSLP .

Musleh Saleh, Islam Mohammad Tariqul, Qureshi Rizwan, Alajez Nihad, Alam Tanvir

2023-Mar-22

Localization prediction, Machine learning, RNA, Sequence analysis, Subcellular localization, mRNA

Internal Medicine Internal Medicine

Anaemia in the first week may be associated with long-term mortality among critically ill patients: propensity score-based analyses.

In BMC emergency medicine

BACKGROUND : Anaemia is highly prevalent in critically ill patients; however, the long-term effect on mortality remains unclear.

METHODS : We retrospectively included patients admitted to the medical intensive care units (ICUs) during 2015-2020 at the Taichung Veterans General Hospital. The primary outcome of interest was one-year mortality, and hazard ratios (HRs) with 95% confidence intervals (CIs) were determined to assess the association. We used propensity score matching (PSM) and propensity score matching methods, including inverse probability of treatment weighting (IPTW) as well as covariate balancing propensity score (CBPS), in the present study.

RESULTS : A total of 7,089 patients were eligible for analyses, and 45.0% (3,189/7,089) of them had anaemia, defined by mean levels of haemoglobin being less than 10 g/dL. The standardised difference of covariates in this study were lower than 0.20 after matching and weighting. The application of CBPS further reduced the imbalance among covariates. We demonstrated a similar association, and adjusted HRs in original, PSM, IPTW and CBPS populations were 1.345 (95% CI 1.227-1.474), 1.265 (95% CI 1.145-1.397), 1.276 (95% CI 1.142-1.427) and 1.260 (95% CI 1.125-1.411), respectively.

CONCLUSIONS : We used propensity score-based analyses to identify that anaemia within the first week was associated with increased one-year mortality in critically ill patients.

Lin I-Hung, Liao Pei-Ya, Wong Li-Ting, Chan Ming-Cheng, Wu Chieh-Liang, Chao Wen-Cheng

2023-Mar-22

Anaemia, Critical illness, Long-term outcome, Propensity score