Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of medical Internet research ; h5-index 88.0

BACKGROUND : Although the potential of big data analytics for health care is well recognized, evidence is lacking on its effects on public health.

OBJECTIVE : The aim of this study was to assess the impact of the use of big data analytics on people's health based on the health indicators and core priorities in the World Health Organization (WHO) General Programme of Work 2019/2023 and the European Programme of Work (EPW), approved and adopted by its Member States, in addition to SARS-CoV-2-related studies. Furthermore, we sought to identify the most relevant challenges and opportunities of these tools with respect to people's health.

METHODS : Six databases (MEDLINE, Embase, Cochrane Database of Systematic Reviews via Cochrane Library, Web of Science, Scopus, and Epistemonikos) were searched from the inception date to September 21, 2020. Systematic reviews assessing the effects of big data analytics on health indicators were included. Two authors independently performed screening, selection, data extraction, and quality assessment using the AMSTAR-2 (A Measurement Tool to Assess Systematic Reviews 2) checklist.

RESULTS : The literature search initially yielded 185 records, 35 of which met the inclusion criteria, involving more than 5,000,000 patients. Most of the included studies used patient data collected from electronic health records, hospital information systems, private patient databases, and imaging datasets, and involved the use of big data analytics for noncommunicable diseases. "Probability of dying from any of cardiovascular, cancer, diabetes or chronic renal disease" and "suicide mortality rate" were the most commonly assessed health indicators and core priorities within the WHO General Programme of Work 2019/2023 and the EPW 2020/2025. Big data analytics have shown moderate to high accuracy for the diagnosis and prediction of complications of diabetes mellitus as well as for the diagnosis and classification of mental disorders; prediction of suicide attempts and behaviors; and the diagnosis, treatment, and prediction of important clinical outcomes of several chronic diseases. Confidence in the results was rated as "critically low" for 25 reviews, as "low" for 7 reviews, and as "moderate" for 3 reviews. The most frequently identified challenges were establishment of a well-designed and structured data source, and a secure, transparent, and standardized database for patient data.

CONCLUSIONS : Although the overall quality of included studies was limited, big data analytics has shown moderate to high accuracy for the diagnosis of certain diseases, improvement in managing chronic diseases, and support for prompt and real-time analyses of large sets of varied input data to diagnose and predict disease outcomes.

TRIAL REGISTRATION : International Prospective Register of Systematic Reviews (PROSPERO) CRD42020214048;

Borges do Nascimento Israel Júnior, Marcolino Milena Soriano, Abdulazeem Hebatullah Mohamed, Weerasekara Ishanka, Azzopardi-Muscat Natasha, Gonçalves Marcos André, Novillo-Ortiz David


World Health Organization, big data, big data analytics, evidence-based medicine, health status, machine learning, overview, public health, secondary data analysis, systematic review