Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational and mathematical methods in medicine

COVID-19 has led to a pandemic, affecting almost all countries in a few months. In this work, we applied selected deep learning models including multilayer perceptron, random forest, and different versions of long short-term memory (LSTM), using three data sources to train the models, including COVID-19 occurrences, basic information like coded country names, and detailed information like population, and area of different countries. The main goal is to forecast the outbreak in nine countries (Iran, Germany, Italy, Japan, Korea, Switzerland, Spain, China, and the USA). The performances of the models are measured using four metrics, including mean average percentage error (MAPE), root mean square error (RMSE), normalized RMSE (NRMSE), and R2. The best performance was found for a modified version of LSTM, called M-LSTM (winner model), to forecast the future trajectory of the pandemic in the mentioned countries. For this purpose, we collected the data from January 22 till July 30, 2020, for training, and from 1 August 2020 to 31 August 2020, for the testing phase. Through experimental results, the winner model achieved reasonably accurate predictions (MAPE, RMSE, NRMSE, and R2 are 0.509, 458.12, 0.001624, and 0.99997, respectively). Furthermore, we stopped the training of the model on some dates related to main country actions to investigate the effect of country actions on predictions by the model.

Kafieh Rahele, Arian Roya, Saeedizadeh Narges, Amini Zahra, Serej Nasim Dadashi, Minaee Shervin, Yadav Sunil Kumar, Vaezi Atefeh, Rezaei Nima, Haghjooy Javanmard Shaghayegh