Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

Pathology Pathology

A Deep Learning Approach for Segmentation of Red Blood Cell Images and Malaria Detection.

In Entropy (Basel, Switzerland)

Malaria is an endemic life-threating disease caused by the unicellular protozoan parasites of the genus Plasmodium. Confirming the presence of parasites early in all malaria cases ensures species-specific antimalarial treatment, reducing the mortality rate, and points to other illnesses in negative cases. However, the gold standard remains the light microscopy of May-Grünwald-Giemsa (MGG)-stained thin and thick peripheral blood (PB) films. This is a time-consuming procedure, dependent on a pathologist's skills, meaning that healthcare providers may encounter difficulty in diagnosing malaria in places where it is not endemic. This work presents a novel three-stage pipeline to (1) segment erythrocytes, (2) crop and mask them, and (3) classify them into malaria infected or not. The first and third steps involved the design, training, validation and testing of a Segmentation Neural Network and a Convolutional Neural Network from scratch using a Graphic Processing Unit. Segmentation achieved a global accuracy of 93.72% over the test set and the specificity for malaria detection in red blood cells (RBCs) was 87.04%. This work shows the potential that deep learning has in the digital pathology field and opens the way for future improvements, as well as for broadening the use of the created networks.

Delgado-Ortet Maria, Molina Angel, Alférez Santiago, Rodellar José, Merino Anna

2020-Jun-13

blood cell classification, convolutional neural networks, deep learning, malaria detection, red blood cell (RBC) segmentation

General General

A New Information-Theoretic Method for Advertisement Conversion Rate Prediction for Large-Scale Sparse Data Based on Deep Learning.

In Entropy (Basel, Switzerland)

With the development of online advertising technology, the accurate targeted advertising based on user preferences is obviously more suitable both for the market and users. The amount of conversion can be properly increased by predicting the user's purchasing intention based on the advertising Conversion Rate (CVR). According to the high-dimensional and sparse characteristics of the historical behavior sequences, this paper proposes a LSLM_LSTM model, which is for the advertising CVR prediction based on large-scale sparse data. This model aims at minimizing the loss, utilizing the Adaptive Moment Estimation (Adam) optimization algorithm to mine the nonlinear patterns hidden in the data automatically. Through the experimental comparison with a variety of typical CVR prediction models, it is found that the proposed LSLM_LSTM model can utilize the time series characteristics of user behavior sequences more effectively, as well as mine the potential relationship hidden in the features, which brings higher accuracy and trains faster compared to those with consideration of only low or high order features.

Xia Qianchen, Lv Jianghua, Ma Shilong, Gao Bocheng, Wang Zhenhua

2020-Jun-10

LSTM, advertising conversion rate, deep learning, information-theoretic method, online advertising, time series

General General

Multi-Stage Meta-Learning for Few-Shot with Lie Group Network Constraint.

In Entropy (Basel, Switzerland)

Deep learning has achieved many successes in different fields but can sometimes encounter an overfitting problem when there are insufficient amounts of labeled samples. In solving the problem of learning with limited training data, meta-learning is proposed to remember some common knowledge by leveraging a large number of similar few-shot tasks and learning how to adapt a base-learner to a new task for which only a few labeled samples are available. Current meta-learning approaches typically uses Shallow Neural Networks (SNNs) to avoid overfitting, thus wasting much information in adapting to a new task. Moreover, the Euclidean space-based gradient descent in existing meta-learning approaches always lead to an inaccurate update of meta-learners, which poses a challenge to meta-learning models in extracting features from samples and updating network parameters. In this paper, we propose a novel meta-learning model called Multi-Stage Meta-Learning (MSML) to post the bottleneck during the adapting process. The proposed method constrains a network to Stiefel manifold so that a meta-learner could perform a more stable gradient descent in limited steps so that the adapting process can be accelerated. An experiment on the mini-ImageNet demonstrates that the proposed method reached a better accuracy under 5-way 1-shot and 5-way 5-shot conditions.

Dong Fang, Liu Li, Li Fanzhang

2020-Jun-05

convolutional neural network, deep learning, lie group, machine learning, meta-learning

General General

Amazon Employees Resources Access Data Extraction via Clonal Selection Algorithm and Logic Mining Approach.

In Entropy (Basel, Switzerland)

Amazon.com Inc. seeks alternative ways to improve manual transactions system of granting employees resources access in the field of data science. The work constructs a modified Artificial Neural Network (ANN) by incorporating a Discrete Hopfield Neural Network (DHNN) and Clonal Selection Algorithm (CSA) with 3-Satisfiability (3-SAT) logic to initiate an Artificial Intelligence (AI) model that executes optimization tasks for industrial data. The selection of 3-SAT logic is vital in data mining to represent entries of Amazon Employees Resources Access (AERA) via information theory. The proposed model employs CSA to improve the learning phase of DHNN by capitalizing features of CSA such as hypermutation and cloning process. This resulting the formation of the proposed model, as an alternative machine learning model to identify factors that should be prioritized in the approval of employees resources applications. Subsequently, reverse analysis method (SATRA) is integrated into our proposed model to extract the relationship of AERA entries based on logical representation. The study will be presented by implementing simulated, benchmark and AERA data sets with multiple performance evaluation metrics. Based on the findings, the proposed model outperformed the other existing methods in AERA data extraction.

Zamri Nur Ezlin, Mansor Mohd Asyraf, Mohd Kasihmuddin Mohd Shareduwan, Alway Alyaa, Mohd Jamaludin Siti Zulaikha, Alzaeemi Shehab Abdulhabib

2020-May-27

Boolean satisfiability, clonal selection algorithm, data extraction, human resources management, logic mining

General General

Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks.

In Entropy (Basel, Switzerland)

Chest compressions during cardiopulmonary resuscitation (CPR) induce artifacts in the ECG that may provoque inaccurate rhythm classification by the algorithm of the defibrillator. The objective of this study was to design an algorithm to produce reliable shock/no-shock decisions during CPR using convolutional neural networks (CNN). A total of 3319 ECG segments of 9 s extracted during chest compressions were used, whereof 586 were shockable and 2733 nonshockable. Chest compression artifacts were removed using a Recursive Least Squares (RLS) filter, and the filtered ECG was fed to a CNN classifier with three convolutional blocks and two fully connected layers for the shock/no-shock classification. A 5-fold cross validation architecture was adopted to train/test the algorithm, and the proccess was repeated 100 times to statistically characterize the performance. The proposed architecture was compared to the most accurate algorithms that include handcrafted ECG features and a random forest classifier (baseline model). The median (90% confidence interval) sensitivity, specificity, accuracy and balanced accuracy of the method were 95.8% (94.6-96.8), 96.1% (95.8-96.5), 96.1% (95.7-96.4) and 96.0% (95.5-96.5), respectively. The proposed algorithm outperformed the baseline model by 0.6-points in accuracy. This new approach shows the potential of deep learning methods to provide reliable diagnosis of the cardiac rhythm without interrupting chest compression therapy.

Isasi Iraia, Irusta Unai, Aramendi Elisabete, Eftestøl Trygve, Kramer-Johansen Jo, Wik Lars

2020-May-27

adaptive filter, cardiopulmonary resuscitation (CPR), convolutional neural network (CNN), deep learning, electrocardiogram (ECG), machine learning, out-of-hospital cardiac arrest (OHCA), random forest (RF) classifier

General General

Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data.

In Entropy (Basel, Switzerland)

Biomedical signals constitute time-series that sustain machine learning techniques to achieve classification. These signals are complex with measurements of several features over, eventually, an extended period. Characterizing whether the data can anticipate prediction is an essential task in time-series mining. The ability to obtain information in advance by having early knowledge about a specific event may be of great utility in many areas. Early classification arises as an extension of the time-series classification problem, given the need to obtain a reliable prediction as soon as possible. In this work, we propose an information-theoretic method, named Multivariate Correlations for Early Classification (MCEC), to characterize the early classification opportunity of a time-series. Experimental validation is performed on synthetic and benchmark data, confirming the ability of the MCEC algorithm to perform a trade-off between accuracy and earliness in a wide-spectrum of time-series data, such as those collected from sensors, images, spectrographs, and electrocardiograms.

Lemus Mariano, Beirão João P, Paunković Nikola, Carvalho Alexandra M, Mateus Paulo

2019-Dec-30

Akaike information criterion, minimum description length, time-series charaterization