Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

Augmented Reality Interface for Complex Anatomy Learning in the Central Nervous System: A Systematic Review.

In Journal of healthcare engineering

The medical system is facing the transformations with augmentation in the use of medical information systems, electronic records, smart, wearable devices, and handheld. The central nervous system function is to control the activities of the mind and the human body. Modern speedy development in medical and computational growth in the field of the central nervous system enables practitioners and researchers to extract and visualize insight from these systems. The function of augmented reality is to incorporate virtual and real objects, interactively running in a real-time and real environment. The role of augmented reality in the central nervous system becomes a thought-provoking task. Gesture interaction approach-based augmented reality in the central nervous system has enormous impending for reducing the care cost, quality refining of care, and waste and error reducing. To make this process smooth, it would be effective to present a comprehensive study report of the available state-of-the-art-work for enabling doctors and practitioners to easily use it in the decision making process. This comprehensive study will finally summarise the outputs of the published materials associate to gesture interaction-based augmented reality approach in the central nervous system. This research uses the protocol of systematic literature which systematically collects, analyses, and derives facts from the collected papers. The data collected range from the published materials for 10 years. 78 papers were selected and included papers based on the predefined inclusion, exclusion, and quality criteria. The study supports to identify the studies related to augmented reality in the nervous system, application of augmented reality in the nervous system, technique of augmented reality in the nervous system, and the gesture interaction approaches in the nervous system. The derivations from the studies show that there is certain amount of rise-up in yearly wise articles, and numerous studies exist, related to augmented reality and gestures interaction approaches to different systems of the human body, specifically to the nervous system. This research organises and summarises the existing associated work, which is in the form of published materials, and are related to augmented reality. This research will help the practitioners and researchers to sight most of the existing studies subjected to augmented reality-based gestures interaction approaches for the nervous system and then can eventually be followed as support in future for complex anatomy learning.

Wirza Rahmita, Nazir Shah, Khan Habib Ullah, García-Magariño Iván, Amin Rohul

2020

General General

Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type.

In International journal of molecular sciences ; h5-index 102.0

With close to 30 sequence-based predictors of RNA-binding residues (RBRs), this comparative survey aims to help with understanding and selection of the appropriate tools. We discuss past reviews on this topic, survey a comprehensive collection of predictors, and comparatively assess six representative methods. We provide a novel and well-designed benchmark dataset and we are the first to report and compare protein-level and datasets-level results, and to contextualize performance to specific types of RNAs. The methods considered here are well-cited and rely on machine learning algorithms on occasion combined with homology-based prediction. Empirical tests reveal that they provide relatively accurate predictions. Virtually all methods perform well for the proteins that interact with rRNAs, some generate accurate predictions for mRNAs, snRNA, SRP and IRES, while proteins that bind tRNAs are predicted poorly. Moreover, except for DRNApred, they confuse DNA and RNA-binding residues. None of the six methods consistently outperforms the others when tested on individual proteins. This variable and complementary protein-level performance suggests that users should not rely on applying just the single best dataset-level predictor. We recommend that future work should focus on the development of approaches that facilitate protein-level selection of accurate predictors and the consensus-based prediction of RBRs.

Wang Kui, Hu Gang, Wu Zhonghua, Su Hong, Yang Jianyi, Kurgan Lukasz

2020-Sep-19

RNA-binding residues, benchmark, messenger RNA, predictive performance, protein-DNA interactions, protein-RNA interactions, ribosomal RNA, signal recognition particle, small nuclear RNA, transfer RNA

General General

Artificial intelligence technology for diagnosing COVID-19 cases: a review of substantial issues.

In European review for medical and pharmacological sciences

Today, the world suffers from the rapid spread of COVID-19, which has claimed thousands of lives. Unfortunately, its treatment is yet to be developed. Nevertheless, this phenomenon can be decelerated by diagnosing and quarantining patients with COVID-19 at early stages, thereby saving numerous lives. In this study, the early diagnosis of this disease through artificial intelligence (AI) technology is explored. AI is a revolutionizing technology that drives new research opportunities in various fields. Although this study does not provide a final solution, it highlights the most promising lines of research on AI technology for the diagnosis of COVID-19. The major contribution of this work is a discussion on the following substantial issues of AI technology for preventing the severe effects of COVID-19: (1) rapid diagnosis and detection, (2) outbreak and prediction of virus spread, and (3) potential treatments. This study profoundly investigates these controversial research topics to achieve a precise, concrete, and concise conclusion. Thus, this study provides significant recommendations on future research directions related to COVID-19.

Alsharif M H, Alsharif Y H, Chaudhry S A, Albreem M A, Jahid A, Hwang E

2020-Sep

General General

Multi-Scale Profiling of Brain Multigraphs by Eigen-based Cross-Diffusion and Heat Tracing for Brain State Profiling

ArXiv Preprint

The individual brain can be viewed as a highly-complex multigraph (i.e. a set of graphs also called connectomes), where each graph represents a unique connectional view of pairwise brain region (node) relationships such as function or morphology. Due to its multifold complexity, understanding how brain disorders alter not only a single view of the brain graph, but its multigraph representation at the individual and population scales, remains one of the most challenging obstacles to profiling brain connectivity for ultimately disentangling a wide spectrum of brain states (e.g., healthy vs. disordered). In this work, while cross-pollinating the fields of spectral graph theory and diffusion models, we unprecedentedly propose an eigen-based cross-diffusion strategy for multigraph brain integration, comparison, and profiling. Specifically, we first devise a brain multigraph fusion model guided by eigenvector centrality to rely on most central nodes in the cross-diffusion process. Next, since the graph spectrum encodes its shape (or geometry) as if one can hear the shape of the graph, for the first time, we profile the fused multigraphs at several diffusion timescales by extracting the compact heat-trace signatures of their corresponding Laplacian matrices. Here, we reveal for the first time autistic and healthy profiles of morphological brain multigraphs, derived from T1-w magnetic resonance imaging (MRI), and demonstrate their discriminability in boosting the classification of unseen samples in comparison with state-of-the-art methods. This study presents the first step towards hearing the shape of the brain multigraph that can be leveraged for profiling and disentangling comorbid neurological disorders, thereby advancing precision medicine.

Mustafa Saglam, Islem Rekik

2020-09-24

General General

A Novel Parameter Initialization Technique Using RBM-NN for Human Action Recognition.

In Computational intelligence and neuroscience

Human action recognition is a trending topic in the field of computer vision and its allied fields. The goal of human action recognition is to identify any human action that takes place in an image or a video dataset. For instance, the actions include walking, running, jumping, throwing, and much more. Existing human action recognition techniques have their own set of limitations when it concerns model accuracy and flexibility. To overcome these limitations, deep learning technologies were implemented. In the deep learning approach, a model learns by itself to improve its recognition accuracy and avoids problems such as gradient eruption, overfitting, and underfitting. In this paper, we propose a novel parameter initialization technique using the Maxout activation function. Firstly, human action is detected and tracked from the video dataset to learn the spatial-temporal features. Secondly, the extracted feature descriptors are trained using the RBM-NN. Thirdly, the local features are encoded into global features using an integrated forward and backward propagation process via RBM-NN. Finally, an SVM classifier recognizes the human actions in the video dataset. The experimental analysis performed on various benchmark datasets showed an improved recognition rate when compared to other state-of-the-art learning models.

Roselind Johnson Deepika, Uthariaraj V Rhymend

2020

General General

Sentiment Analysis of Shared Tweets on Global Warming on Twitter with Data Mining Methods: A Case Study on Turkish Language.

In Computational intelligence and neuroscience

As the usage of social media has increased, the size of shared data has instantly surged and this has been an important source of research for environmental issues as it has been with popular topics. Sentiment analysis has been used to determine people's sensitivity and behavior in environmental issues. However, the analysis of Turkish texts has not been investigated much in literature. In this article, sentiment analysis of Turkish tweets about global warming and climate change is determined by machine learning methods. In this regard, by using algorithms that are determined by supervised methods (linear classifiers and probabilistic classifiers) with trained thirty thousand randomly selected Turkish tweets, sentiment intensity (positive, negative, and neutral) has been detected and algorithm performance ratios have been compared. This study also provides benchmarking results for future sentiment analysis studies on Turkish texts.

Kirelli Yasin, Arslankaya Seher

2020