Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

Development, implementation, and prospective validation of a model to predict 60-day end-of-life in hospitalized adults upon admission at three sites.

In BMC medical informatics and decision making ; h5-index 38.0

BACKGROUND : Automated systems that use machine learning to estimate a patient's risk of death are being developed to influence care. There remains sparse transparent reporting of model generalizability in different subpopulations especially for implemented systems.

METHODS : A prognostic study included adult admissions at a multi-site, academic medical center between 2015 and 2017. A predictive model for all-cause mortality (including initiation of hospice care) within 60 days of admission was developed. Model generalizability is assessed in temporal validation in the context of potential demographic bias. A subsequent prospective cohort study was conducted at the same sites between October 2018 and June 2019. Model performance during prospective validation was quantified with areas under the receiver operating characteristic and precision recall curves stratified by site. Prospective results include timeliness, positive predictive value, and the number of actionable predictions.

RESULTS : Three years of development data included 128,941 inpatient admissions (94,733 unique patients) across sites where patients are mostly white (61%) and female (60%) and 4.2% led to death within 60 days. A random forest model incorporating 9614 predictors produced areas under the receiver operating characteristic and precision recall curves of 87.2 (95% CI, 86.1-88.2) and 28.0 (95% CI, 25.0-31.0) in temporal validation. Performance marginally diverges within sites as the patient mix shifts from development to validation (patients of one site increases from 10 to 38%). Applied prospectively for nine months, 41,728 predictions were generated in real-time (median [IQR], 1.3 [0.9, 32] minutes). An operating criterion of 75% positive predictive value identified 104 predictions at very high risk (0.25%) where 65% (50 from 77 well-timed predictions) led to death within 60 days.

CONCLUSION : Temporal validation demonstrates good model discrimination for 60-day mortality. Slight performance variations are observed across demographic subpopulations. The model was implemented prospectively and successfully produced meaningful estimates of risk within minutes of admission.

Major Vincent J, Aphinyanaphongs Yindalon


Advance directives, Electronic health records, End-of-life care, Machine learning, Medical informatics, Mortality prediction, Palliative care, Supportive care

General General

A systematic study of critical miRNAs on cells proliferation and apoptosis by the shortest path.

In BMC bioinformatics

BACKGROUND : MicroRNAs are a class of important small noncoding RNAs, which have been reported to be involved in the processes of tumorigenesis and development by targeting a few genes. Existing studies show that the imbalance between cell proliferation and apoptosis is closely related to the initiation and development of cancers. However, the impact of miRNAs on this imbalance has not been studied systematically.

RESULTS : In this study, we first construct a cell fate miRNA-gene regulatory network. Then, we propose a systematical method for calculating the global impact of miRNAs on cell fate genes based on the shortest path. Results on breast cancer and liver cancer datasets show that most of the cell fate genes are perturbed by the differentially expressed miRNAs. Most of the top-identified miRNAs are verified in the Human MicroRNA Disease Database (HMDD) and are related to breast and liver cancers. Function analysis shows that the top 20 miRNAs regulate multiple cell fate related function modules and interact tightly based on their functional similarity. Furthermore, more than half of them can promote sensitivity or induce resistance to some anti-cancer drugs. Besides, survival analysis demonstrates that the top-ranked miRNAs are significantly related to the overall survival time in the breast and liver cancers group.

CONCLUSION : In sum, this study can help to systematically study the important role of miRNAs on proliferation and apoptosis and thereby uncover the key miRNAs during the process of tumorigenesis. Furthermore, the results of this study will contribute to the development of clinical therapy based miRNAs for cancers.

Xu Peng, Wu Qian, Lu Deyang, Yu Jian, Rao Yongsheng, Kou Zheng, Fang Gang, Liu Wenbin, Han Henry


Apoptosis, Cancer, Cell fate gene, Imbalance, Proliferation, miRNA

General General

An artificial neural network-based model to predict chronic kidney disease in aged cats.

In Journal of veterinary internal medicine ; h5-index 37.0

BACKGROUND : Chronic kidney disease (CKD) frequently causes death in older cats; its early detection is challenging.

OBJECTIVES : To build a sensitive and specific model for early prediction of CKD in cats using artificial neural network (ANN) techniques applied to routine health screening data.

ANIMALS : Data from 218 healthy cats ≥7 years of age screened at the Royal Veterinary College (RVC) were used for model building. Performance was tested using data from 3546 cats in the Banfield Pet Hospital records and an additional 60 RCV cats-all initially without a CKD diagnosis.

METHODS : Artificial neural network (ANN) modeling used a multilayer feed-forward neural network incorporating a back-propagation algorithm. Clinical variables from single cat visits were selected using factorial discriminant analysis. Independent submodels were built for different prediction time frames. Two decision threshold strategies were investigated.

RESULTS : Input variables retained were plasma creatinine and blood urea concentrations, and urine specific gravity. For prediction of CKD within 12 months, the model had accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 88%, 87%, 70%, 53%, and 92%, respectively. An alternative decision threshold increased specificity and PPV to 98% and 87%, but decreased sensitivity and NPV to 42% and 79%, respectively.

CONCLUSIONS AND CLINICAL IMPORTANCE : A model was generated that identified cats in the general population ≥7 years of age that are at risk of developing CKD within 12 months. These individuals can be recommended for further investigation and monitoring more frequently than annually. Predictions were based on single visits using common clinical variables.

Biourge Vincent, Delmotte Sebastien, Feugier Alexandre, Bradley Richard, McAllister Molly, Elliott Jonathan


CKD modeling, artificial intelligence, prediction tool, prevention, senior health check

General General

Detection of Anomalies and Faults in Industrial IoT Systems by Data Mining: Study of CHRIST Osmotron Water Purification System

ArXiv Preprint

Industry 4.0 will make manufacturing processes smarter but this smartness requires more environmental awareness, which in case of Industrial Internet of Things, is realized by the help of sensors. This article is about industrial pharmaceutical systems and more specifically, water purification systems. Purified water which has certain conductivity is an important ingredient in many pharmaceutical products. Almost every pharmaceutical company has a water purifying unit as a part of its interdependent systems. Early detection of faults right at the edge can significantly decrease maintenance costs and improve safety and output quality, and as a result, lead to the production of better medicines. In this paper, with the help of a few sensors and data mining approaches, an anomaly detection system is built for CHRIST Osmotron water purifier. This is a practical research with real-world data collected from SinaDarou Labs Co. Data collection was done by using six sensors over two-week intervals before and after system overhaul. This gave us normal and faulty operation samples. Given the data, we propose two anomaly detection approaches to build up our edge fault detection system. The first approach is based on supervised learning and data mining e.g. by support vector machines. However, since we cannot collect all possible faults data, an anomaly detection approach is proposed based on normal system identification which models the system components by artificial neural networks. Extensive experiments are conducted with the dataset generated in this study to show the accuracy of the data-driven and model-based anomaly detection methods.

Mohammad Sadegh Sadeghi Garmaroodi, Faezeh Farivar, Mohammad Sayad Haghighi, Mahdi Aliyari Shoorehdeli, Alireza Jolfaei


General General

DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.

In Proteins

Accurate prediction of protein secondary structure (alpha-helix, beta-strand and coil) is a crucial step for protein inter-residue contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network-based protein secondary structure method (DNSS1) and successfully advanced the prediction accuracy beyond 80%. In this work, we developed multiple advanced deep learning architectures (DNSS2) to further improve secondary structure prediction. The major improvements over the DNSS1 method include (a) designing and integrating six advanced one-dimensional deep convolutional/recurrent/residual/memory/fractal/inception networks to predict 3-state and 8-state secondary structure, and (b) using more sensitive profile features inferred from Hidden Markov model (HMM) and multiple sequence alignment (MSA). Most of the deep learning architectures are novel for protein secondary structure prediction. DNSS2 was systematically benchmarked on independent test data sets with eight state-of-art tools and consistently ranked as one of the best methods. Particularly, DNSS2 was tested on the protein targets of 2018 CASP13 experiment and achieved the Q3 score of 81.62%, SOV score of 72.19%, and Q8 score of 73.28%. DNSS2 is freely available at:

Guo Zhiye, Hou Jie, Cheng Jianlin


CASP, deep learning, secondary structure prediction

Pathology Pathology

Convolution Neural Networks for diagnosing colon and lung cancer histopathological images

ArXiv Preprint

Lung and Colon cancer are one of the leading causes of mortality and morbidity in adults. Histopathological diagnosis is one of the key components to discern cancer type. The aim of the present research is to propose a computer aided diagnosis system for diagnosing squamous cell carcinomas and adenocarcinomas of lung as well as adenocarcinomas of colon using convolutional neural networks by evaluating the digital pathology images for these cancers. Hereby, rendering artificial intelligence as useful technology in the near future. A total of 2500 digital images were acquired from LC25000 dataset containing 5000 images for each class. A shallow neural network architecture was used classify the histopathological slides into squamous cell carcinomas, adenocarcinomas and benign for the lung. Similar model was used to classify adenocarcinomas and benign for colon. The diagnostic accuracy of more than 97% and 96% was recorded for lung and colon respectively.

Sanidhya Mangal, Aanchal Chaurasia, Ayush Khajanchi