Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

Predicting Progression from Normal to MCI and from MCI to AD Using Clinical Variables in the National Alzheimer's Coordinating Center Uniform Data Set Version 3: Application of Machine Learning Models and a Probability Calculator.

In The journal of prevention of Alzheimer's disease

Clinical trials are increasingly focused on pre-manifest and early Alzheimer's disease (AD). Accurately predicting clinical progressions from normal to MCI or from MCI to dementia/AD versus non-progression is challenging. Accurate identification of symptomatic progressors is important to avoid unnecessary treatment and improve trial efficiency. Due to large inter-individual variability, biomarker positivity and comorbidity information are often insufficient to identify those destined to have symptomatic progressions. Using only clinical variables, we aimed to predict clinical progressions, estimating probabilities of progressions with a small set of variables selected by machine learning approaches. This work updates our previous work that was applied to the National Alzheimer's Coordinating Center (NACC) Uniform Data Set Version 2 (V2), by using the most recent version (V3) with additional analyses. We generated a user-friendly conversion probability calculator which can be used for effectively pre-screening trial participants.

Pang Y, Kukull W, Sano M, Albin R L, Shen C, Zhou J, Dodge H H

2023

AD, Alzheimer’s disease, MCI, MCI conversion, National Alzheimer’s Coordinating Center (NACC), PET amyloid, dementia, machine learning

General General

A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing.

In Nature communications ; h5-index 260.0

Neurobiological systems continually interact with the surrounding environment to refine their behaviour toward the best possible reward. Achieving such learning by experience is one of the main challenges of artificial intelligence, but currently it is hindered by the lack of hardware capable of plastic adaptation. Here, we propose a bio-inspired recurrent neural network, mastered by a digital system on chip with resistive-switching synaptic arrays of memory devices, which exploits homeostatic Hebbian learning for improved efficiency. All the results are discussed experimentally and theoretically, proposing a conceptual framework for benchmarking the main outcomes in terms of accuracy and resilience. To test the proposed architecture for reinforcement learning tasks, we study the autonomous exploration of continually evolving environments and verify the results for the Mars rover navigation. We also show that, compared to conventional deep learning techniques, our in-memory hardware has the potential to achieve a significant boost in speed and power-saving.

Bianchi S, Muñoz-Martin I, Covi E, Bricalli A, Piccolboni G, Regev A, Molas G, Nodin J F, Andrieu F, Ielmini D

2023-Mar-21

General General

Understanding Prospective Physicians' Intention to Use Artificial Intelligence in Their Future Medical Practice: Configurational Analysis.

In JMIR medical education

BACKGROUND : Prospective physicians are expected to find artificial intelligence (AI) to be a key technology in their future practice. This transformative change has caught the attention of scientists, educators, and policy makers alike, with substantive efforts dedicated to the selection and delivery of AI topics and competencies in the medical curriculum. Less is known about the behavioral perspective or the necessary and sufficient preconditions for medical students' intention to use AI in the first place.

OBJECTIVE : Our study focused on medical students' knowledge, experience, attitude, and beliefs related to AI and aimed to understand whether they are necessary conditions and form sufficient configurations of conditions associated with behavioral intentions to use AI in their future medical practice.

METHODS : We administered a 2-staged questionnaire operationalizing the variables of interest (ie, knowledge, experience, attitude, and beliefs related to AI, as well as intention to use AI) and recorded 184 responses at t0 (February 2020, before the COVID-19 pandemic) and 138 responses at t1 (January 2021, during the COVID-19 pandemic). Following established guidelines, we applied necessary condition analysis and fuzzy-set qualitative comparative analysis to analyze the data.

RESULTS : Findings from the fuzzy-set qualitative comparative analysis show that the intention to use AI is only observed when students have a strong belief in the role of AI (individually necessary condition); certain AI profiles, that is, combinations of knowledge and experience, attitudes and beliefs, and academic level and gender, are always associated with high intentions to use AI (equifinal and sufficient configurations); and profiles associated with nonhigh intentions cannot be inferred from profiles associated with high intentions (causal asymmetry).

CONCLUSIONS : Our work contributes to prior knowledge by showing that a strong belief in the role of AI in the future of medical professions is a necessary condition for behavioral intentions to use AI. Moreover, we suggest that the preparation of medical students should go beyond teaching AI competencies and that educators need to account for the different AI profiles associated with high or nonhigh intentions to adopt AI.

Wagner Gerit, Raymond Louis, Paré Guy

2023-Mar-22

artificial intelligence, attitudes and beliefs, behavioral intentions, fsQCA, fuzzy-set qualitative comparative analysis, knowledge and experience, medical education

General General

Human Behavior in the Time of COVID-19: Learning from Big Data

ArXiv Preprint

Since the World Health Organization (WHO) characterized COVID-19 as a pandemic in March 2020, there have been over 600 million confirmed cases of COVID-19 and more than six million deaths as of October 2022. The relationship between the COVID-19 pandemic and human behavior is complicated. On one hand, human behavior is found to shape the spread of the disease. On the other hand, the pandemic has impacted and even changed human behavior in almost every aspect. To provide a holistic understanding of the complex interplay between human behavior and the COVID-19 pandemic, researchers have been employing big data techniques such as natural language processing, computer vision, audio signal processing, frequent pattern mining, and machine learning. In this study, we present an overview of the existing studies on using big data techniques to study human behavior in the time of the COVID-19 pandemic. In particular, we categorize these studies into three groups - using big data to measure, model, and leverage human behavior, respectively. The related tasks, data, and methods are summarized accordingly. To provide more insights into how to fight the COVID-19 pandemic and future global catastrophes, we further discuss challenges and potential opportunities.

Hanjia Lyu, Arsal Imtiaz, Yufei Zhao, Jiebo Luo

2023-03-23

General General

Utility of Environmental Complexity as a Predictor of Alzheimer's Disease Diagnosis: A Big-Data Machine Learning Approach.

In The journal of prevention of Alzheimer's disease

BACKGROUND : Rural-urban differences and spatial navigation deficits have received much attention in Alzheimer's Disease research. While individual environmental and neighborhood factors have been independently investigated, their integrative, multifactorial effects on Alzheimer's diagnosis have not. Here we explore this "environmental complexity" for predictive power in classifying Alzheimer's from cognitively-normal status.

METHODS : We utilized data from the National Alzheimer's Coordinating Center (NACC) uniform data set containing annual visits since 2005 and selected individuals with multiple visits and who remained in their zipcode (N = 22,553). We georeferenced each subject with 3-digit zipcodes of their residences since entering the program. We calculated environmental complexity measures using geospatial tools from street networks and landmarks for spatial navigation in subjects' zipcode zones. Zipcode zones were grouped into two cognitive classes (Cognitively-Normal and Alzheimer's-inclined) based on the ratios of AD and dementia subjects to all subjects in an individual zipcode zone. We randomly selected 80% of the data to train a neural network classifier model on environmental complexity measures to predict the cognitive class for each zone, controlling for salient demographic variables. The remaining 20% served as the test set for performance evaluation.

RESULTS : Our proposed model reached excellent classification ability on the testing data: 83.87% accuracy, 95.23% precision, 83.33% recall, and 0.8889 F1-score (F1-score=1 for perfect prediction). The most salient features of "Alzheimer's-inclined" zipcode zones included longer street-length average, higher circuity, and slightly fewer points of interest. Most "cognitively-normal" zipcode zones appeared in or near urban areas with high environmental complexity measures.

CONCLUSION : Environmental complexity, reflected in frequency and density of street networks and landmarks features, predicted with high precision the cognitive status of 3-digit zipcode zones based on the etiologic diagnoses and observed cognitive impairment of NACC subjects residing in these zones. The zipcode zones vary widely in size (1.6 km2 to 35,241 km2), and large zipcode zones suffer high spatial heterogeneity. Other proven AD risk factors, such as PM2.5, disperse across zones, and so do individual's activities, leading to spatial uncertainty. Nevertheless, the model classifies diagnosis well, establishing the need for prospective experiments to quantify effects of environmental complexity on Alzheimer's development.

Yuan M, Kennedy K M

2023

Alzheimer’s disease, cognitive map, environmental complexity, geospatial mapping, neural network modelling

General General

Poincaré maps for visualization of large protein families.

In Briefings in bioinformatics

In the era of constantly increasing amounts of the available protein data, a relevant and interpretable visualization becomes crucial, especially for tasks requiring human expertise. Poincaré disk projection has previously demonstrated its important efficiency for visualization of biological data such as single-cell RNAseq data. Here, we develop a new method PoincaréMSA for visual representation of complex relationships between protein sequences based on Poincaré maps embedding. We demonstrate its efficiency and potential for visualization of protein family topology as well as evolutionary and functional annotation of uncharacterized sequences. PoincaréMSA is implemented in open source Python code with available interactive Google Colab notebooks as described at https://www.dsimb.inserm.fr/POINCARE_MSA.

Susmelj Anna Klimovskaia, Ren Yani, Vander Meersche Yann, Gelly Jean-Christophe, Galochkina Tatiana

2023-Mar-22

data visualization, dimensionality reduction, machine learning, multiple sequence alignment, protein evolution, protein function, protein sequence, sequence similarity