Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

When Healthcare Meets Off-the-Shelf WiFi: A Non-Wearable and Low-Costs Approach for In-Home Monitoring

ArXiv Preprint

As elderly population grows, social and health care begin to face validation challenges, in-home monitoring is becoming a focus for professionals in the field. Governments urgently need to improve the quality of healthcare services at lower costs while ensuring the comfort and independence of the elderly. This work presents an in-home monitoring approach based on off-the-shelf WiFi, which is low-costs, non-wearable and makes all-round daily healthcare information available to caregivers. The proposed approach can capture fine-grained human pose figures even through a wall and track detailed respiration status simultaneously by off-the-shelf WiFi devices. Based on them, behavioral data, physiological data and the derived information (e.g., abnormal events and underlying diseases), of the elderly could be seen by caregivers directly. We design a series of signal processing methods and a neural network to capture human pose figures and extract respiration status curves from WiFi Channel State Information (CSI). Extensive experiments are conducted and according to the results, off-the-shelf WiFi devices are capable of capturing fine-grained human pose figures, similar to cameras, even through a wall and track accurate respiration status, thus demonstrating the effectiveness and feasibility of our approach for in-home monitoring.

Lingchao Guo, Zhaoming Lu, Shuang Zhou, Xiangming Wen, Zhihong He

2020-09-21

Public Health Public Health

Leading dietary determinants identified using machine learning techniques and a healthy diet score for changes in cardiometabolic risk factors in children: a longitudinal analysis.

In Nutrition journal ; h5-index 45.0

BACKGROUND : Identifying leading dietary determinants for cardiometabolic risk (CMR) factors is urgent for prioritizing interventions in children. We aimed to identify leading dietary determinants for the change in CMR and create a healthy diet score (HDS) to predict CMR in children.

METHODS : We included 5676 children aged 6-13 years in the final analysis with physical examinations, blood tests, and diets assessed at baseline and one year later. CMR score (CMRS) was computed by summing Z-scores of waist circumference, an average of systolic and diastolic blood pressure (SBP and DBP), fasting glucose, high-density lipoprotein cholesterol (HDL-C, multiplying by - 1), and triglycerides. Machine learning was used to identify leading dietary determinants for CMR and an HDS was then computed.

RESULTS : The nine leading predictors for CMRS were refined grains, seafood, fried foods, sugar-sweetened beverages, wheat, red meat other than pork, rice, fungi and algae, and roots and tubers with the contribution ranging from 3.9 to 19.6% of the total variance. Diets high in seafood, rice, and red meat other than pork but low in other six food groups were associated with a favorable change in CMRS. The HDS was computed based on these nine dietary factors. Children with HDS ≥8 had a higher decrease in CMRS (β (95% CI): - 1.02 (- 1.31, - 0.73)), BMI (- 0.08 (- 0.16, - 0.00)), SBP (- 0.46 (- 0.58, - 0.34)), DBP (- 0.46 (- 0.58, - 0.34)), mean arterial pressure (- 0.50 (- 0.62, - 0.38)), fasting glucose (- 0.22 (- 0.32, - 0.11)), insulin (- 0.52 (- 0.71, - 0.32)), and HOMA-IR (- 0.55 (- 0.73, - 0.36)) compared to those with HDS ≦3. Improved HDS during follow-up was associated with favorable changes in CMRS, BMI, percent body fat, SBP, DBP, mean arterial pressure, HDL-C, fasting glucose, insulin, and HOMA-IR.

CONCLUSION : Diets high in seafood, rice, and red meat other than pork and low in refined grains, fried foods, sugar-sweetened beverages, and wheat are leading healthy dietary factors for metabolic health in children. HDS is strongly predictive of CMR factors.

Shang Xianwen, Li Yanping, Xu Haiquan, Zhang Qian, Liu Ailing, Du Songming, Guo Hongwei, Ma Guansheng

2020-Sep-19

Cardiometabolic risk factors, Children, Healthy diet score, Leading dietary determinants, Machine learning

General General

Assessing the Severity of Health States based on Social Media Posts

ArXiv Preprint

The unprecedented growth of Internet users has resulted in an abundance of unstructured information on social media including health forums, where patients request health-related information or opinions from other users. Previous studies have shown that online peer support has limited effectiveness without expert intervention. Therefore, a system capable of assessing the severity of health state from the patients' social media posts can help health professionals (HP) in prioritizing the user's post. In this study, we inspect the efficacy of different aspects of Natural Language Understanding (NLU) to identify the severity of the user's health state in relation to two perspectives(tasks) (a) Medical Condition (i.e., Recover, Exist, Deteriorate, Other) and (b) Medication (i.e., Effective, Ineffective, Serious Adverse Effect, Other) in online health communities. We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state. Specifically, our model utilizes the NLU views such as sentiment, emotions, personality, and use of figurative language to extract the contextual information. The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.

Shweta Yadav, Joy Prakash Sain, Amit Sheth, Asif Ekbal, Sriparna Saha, Pushpak Bhattacharyya

2020-09-21

General General

Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images

ArXiv Preprint

The COVID-19 pandemic is undoubtedly one of the biggest public health crises our society has ever faced. This paper's main objectives are to demonstrate the impact of lung segmentation in COVID-19 automatic identification using CXR images and evaluate which contents of the image decisively contribute to the identification. We have performed lung segmentation using a U-Net CNN architecture, and the classification using three well-known CNN architectures: VGG, ResNet, and Inception. To estimate the impact of lung segmentation, we applied some Explainable Artificial Intelligence (XAI), such as LIME and Grad-CAM. To evaluate our approach, we built a database named RYDLS-20-v2, following our previous publication and the COVIDx database guidelines. We evaluated the impact of creating a COVID-19 CXR image database from different sources, called database bias, and the COVID-19 generalization from one database to another, representing our less biased scenario. The experimental results of the segmentation achieved a Jaccard distance of 0.034 and a Dice coefficient of 0.982. In the best and more realistic scenario, we achieved an F1-Score of 0.74 and an area under the ROC curve of 0.9 for COVID-19 identification using segmented CXR images. Further testing and XAI techniques suggest that segmented CXR images represent a much more realistic and less biased performance. More importantly, the experiments conducted show that even after segmentation, there is a strong bias introduced by underlying factors from the data sources, and more efforts regarding the creation of a more significant and comprehensive database still need to be done.

Lucas O. Teixeira, Rodolfo M. Pereira, Diego Bertolini, Luiz S. Oliveira, Loris Nanni, Yandre M. G. Costa

2020-09-21

General General

Changing the Nature of Quantitative Biology Education: Data Science as a Driver.

In Bulletin of mathematical biology

We live in a data-rich world with rapidly growing databases with zettabytes of data. Innovation, computation, and technological advances have now tremendously accelerated the pace of discovery, providing driverless cars, robotic devices, expert healthcare systems, precision medicine, and automated discovery to mention a few. Even though the definition of the term data science continues to evolve, the sweeping impact it has already produced on society is undeniable. We are at a point when new discoveries through data science have enormous potential to advance progress but also to be used maliciously, with harmful ethical and social consequences. Perhaps nowhere is this more clearly exemplified than in the biological and medical sciences. The confluence of (1) machine learning, (2) mathematical modeling, (3) computation/simulation, and (4) big data have moved us from the sequencing of genomes to gene editing and individualized medicine; yet, unsettled policies regarding data privacy and ethical norms could potentially open doors for serious negative repercussions. The data science revolution has amplified the urgent need for a paradigm shift in undergraduate biology education. It has reaffirmed that data science education interacts and enhances mathematical education in advancing quantitative conceptual and skill development for the new generation of biologists. These connections encourage us to strive to cultivate a broadly skilled workforce of technologically savvy problem-solvers, skilled at handling the unique challenges pertaining to biological data, and capable of collaborating across various disciplines in the sciences, the humanities, and the social sciences. To accomplish this, we suggest development of open curricula that extend beyond the job certification rhetoric and combine data acumen with modeling, experimental, and computational methods through engaging projects, while also providing awareness and deep exploration of their societal implications. This process would benefit from embracing the pedagogy of experiential learning and involve students in open-ended explorations derived from authentic inquiries and ongoing research. On this foundation, we encourage development of flexible data science initiatives for the education of life science undergraduates within and across existing models.

Robeva Raina S, Jungck John R, Gross Louis J

2020-Sep-19

Big data, Data science education, Education reform, Mathematical biology education

General General

Addressing health disparities in the Food and Drug Administration's artificial intelligence and machine learning regulatory framework.

In Journal of the American Medical Informatics Association : JAMIA

The exponential growth of health data from devices, health applications, and electronic health records coupled with the development of data analysis tools such as machine learning offer opportunities to leverage these data to mitigate health disparities. However, these tools have also been shown to exacerbate inequities faced by marginalized groups. Focusing on health disparities should be part of good machine learning practice and regulatory oversight of software as medical devices. Using the Food and Drug Administration (FDA)'s proposed framework for regulating machine learning tools in medicine, I show that addressing health disparities during the premarket and postmarket stages of review can help anticipate and mitigate group harms.

Ferryman Kadija

2020-Sep-20

artificial intelligence, health disparities, health policy, machine learning