Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

Outcomes associated with SARS-CoV-2 viral clades in COVID-19.

In medRxiv : the preprint server for health sciences

Background The COVID-19 epidemic of 2019-20 is due to the novel coronavirus SARS-CoV-2. Following first case description in December, 2019 this virus has infected over 10 million individuals and resulted in at least 500,000 deaths world-wide. The virus is undergoing rapid mutation, with two major clades of sequence variants emerging. This study sought to determine whether SARS-CoV-2 sequence variants are associated with differing outcomes among COVID-19 patients in a single medical system. Methods Whole genome SARS-CoV-2 RNA sequence was obtained from isolates collected from patients registered in the University of Washington Medicine health system between March 1 and April 15, 2020. Demographic and baseline medical data along with outcomes of hospitalization and death were collected. Statistical and machine learning models were applied to determine if viral genetic variants were associated with specific outcomes of hospitalization or death. Findings Full length SARS-CoV-2 sequence was obtained 190 subjects with clinical outcome data. 35 (18.4%) were hospitalized and 14 (7.4%) died from complications of infection. A total of 289 single nucleotide variants were identified. Clustering methods demonstrated two major viral clades, which could be readily distinguished by 12 polymorphisms in 5 genes. A trend toward higher rates of hospitalization of patients with Clade 2 was observed (p=0.06). Machine learning models utilizing patient demographics and co-morbidities achieved area-under-the-curve (AUC) values of 0.93 for predicting hospitalization. Addition of viral clade or sequence information did not significantly improve models for outcome prediction. Conclusion SARS-CoV-2 shows substantial sequence diversity in a community-based sample. Two dominant clades of virus are in circulation. Among patients sufficiently ill to warrant testing for virus, no significant difference in outcomes of hospitalization or death could be discerned between clades in this sample. Major risk factors for hospitalization and death for either major clade of virus include patient age and comorbid conditions.

Nakamichi Kenji, Shen Jolie Zhu, Lee Cecilia S, Lee Aaron Y, Roberts Emma Adaline, Simonson Paul D, Roychoudhury Pavitra, Andriesen Jessica G, Randhawa April K, Mathias Patrick C, Greninger Alex, Jerome Keith R, Van Gelder Russell N

2020-Sep-25

Radiology Radiology

Integrated Multiparametric Radiomics and Informatics System for Characterizing Breast Tumor Characteristics with the OncotypeDX Gene Assay.

In Cancers

Optimal use of multiparametric magnetic resonance imaging (mpMRI) can identify key MRI parameters and provide unique tissue signatures defining phenotypes of breast cancer. We have developed and implemented a new machine-learning informatic system, termed Informatics Radiomics Integration System (IRIS) that integrates clinical variables, derived from imaging and electronic medical health records (EHR) with multiparametric radiomics (mpRad) for identifying potential risk of local or systemic recurrence in breast cancer patients. We tested the model in patients (n = 80) who had Estrogen Receptor positive disease and underwent OncotypeDX gene testing, radiomic analysis, and breast mpMRI. The IRIS method was trained using the mpMRI, clinical, pathologic, and radiomic descriptors for prediction of the OncotypeDX risk score. The trained mpRad IRIS model had a 95% and specificity was 83% with an Area Under the Curve (AUC) of 0.89 for classifying low risk patients from the intermediate and high-risk groups. The lesion size was larger for the high-risk group (2.9 ± 1.7 mm) and lower for both low risk (1.9 ± 1.3 mm) and intermediate risk (1.7 ± 1.4 mm) groups. The lesion apparent diffusion coefficient (ADC) map values for high- and intermediate-risk groups were significantly (p < 0.05) lower than the low-risk group (1.14 vs. 1.49 × 10-3 mm2/s). These initial studies provide deeper insight into the clinical, pathological, quantitative imaging, and radiomic features, and provide the foundation to relate these features to the assessment of treatment response for improved personalized medicine.

Jacobs Michael A, Umbricht Christopher B, Parekh Vishwa S, El Khouli Riham H, Cope Leslie, Macura Katarzyna J, Harvey Susan, Wolff Antonio C

2020-Sep-27

ADC map, DWI, IRIS, OncotypeDX, breast, cancer, diffusion-weighted imaging, informatics, machine learning, magnetic resonance imaging, mpRad, multiparametric radiomics, radiomics

General General

The Emerging Role of Artificial Intelligence in the Fight Against COVID-19.

In European urology ; h5-index 128.0

The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19-related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway.

Ghose Aruni, Roy Sabyasachi, Vasdev Nikhil, Olsburgh Jonathon, Dasgupta Prokar

2020-Sep-17

General General

Deep learning for time series classification

ArXiv Preprint

Time series analysis is a field of data science which is interested in analyzing sequences of numerical values ordered in time. Time series are particularly interesting because they allow us to visualize and understand the evolution of a process over time. Their analysis can reveal trends, relationships and similarities across the data. There exists numerous fields containing data in the form of time series: health care (electrocardiogram, blood sugar, etc.), activity recognition, remote sensing, finance (stock market price), industry (sensors), etc. Time series classification consists of constructing algorithms dedicated to automatically label time series data. The sequential aspect of time series data requires the development of algorithms that are able to harness this temporal property, thus making the existing off-the-shelf machine learning models for traditional tabular data suboptimal for solving the underlying task. In this context, deep learning has emerged in recent years as one of the most effective methods for tackling the supervised classification task, particularly in the field of computer vision. The main objective of this thesis was to study and develop deep neural networks specifically constructed for the classification of time series data. We thus carried out the first large scale experimental study allowing us to compare the existing deep methods and to position them compared other non-deep learning based state-of-the-art methods. Subsequently, we made numerous contributions in this area, notably in the context of transfer learning, data augmentation, ensembling and adversarial attacks. Finally, we have also proposed a novel architecture, based on the famous Inception network (Google), which ranks among the most efficient to date.

Hassan Ismail Fawaz

2020-10-01

Pathology Pathology

AI for radiographic COVID-19 detection selects shortcuts over signal.

In medRxiv : the preprint server for health sciences

Artificial intelligence (AI) researchers and radiologists have recently reported AI systems that accurately detect COVID-19 in chest radiographs. However, the robustness of these systems remains unclear. Using state-of-the-art techniques in explainable AI, we demonstrate that recent deep learning systems to detect COVID-19 from chest radiographs rely on confounding factors rather than medical pathology, creating an alarming situation in which the systems appear accurate, but fail when tested in new hospitals.

DeGrave Alex J, Janizek Joseph D, Lee Su-In

2020-Sep-14

General General

Improvement and Multi-Population Generalizability of a Deep Learning-Based Chest Radiograph Severity Score for COVID-19.

In medRxiv : the preprint server for health sciences

PURPOSE : To improve and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations.

MATERIALS AND METHODS : A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from four test sets, including 3 from the United States (patients hospitalized at an academic medical center (N=154), patients hospitalized at a community hospital (N=113), and outpatients (N=108)) and 1 from Brazil (patients at an academic medical center emergency department (N=303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson r). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results.

RESULTS : Tuning the deep learning model with outpatient data improved model performance in two United States hospitalized patient datasets (r=0.88 and r=0.90, compared to baseline r=0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (r=0.86 and r=0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets.

CONCLUSIONS : Performance of a deep learning-based model that extracts a COVID-19 severity score on CXRs improved using training data from a different patient cohort (outpatient versus hospitalized) and generalized across multiple populations.

Li Matthew D, Arun Nishanth T, Aggarwal Mehak, Gupta Sharut, Singh Praveer, Little Brent P, Mendoza Dexter P, Corradi Gustavo C A, Takahashi Marcelo S, Ferraciolli Suely F, Succi Marc D, Lang Min, Bizzo Bernardo C, Dayan Ittai, Kitamura Felipe C, Kalpathy-Cramer Jayashree

2020-Sep-18