Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

A Comprehensive Survey on Federated Learning Techniques for Healthcare Informatics.

In Computational intelligence and neuroscience

Healthcare is predominantly regarded as a crucial consideration in promoting the general physical and mental health and well-being of people around the world. The amount of data generated by healthcare systems is enormous, making it challenging to manage. Many machine learning (ML) approaches were implemented to develop dependable and robust solutions to handle the data. ML cannot fully utilize data due to privacy concerns. This primarily happens in the case of medical data. Due to a lack of precise clinical data, the application of ML for the same is challenging and may not yield desired results. Federated learning (FL), which is a recent development in ML where the computation is offloaded to the source of data, appears to be a promising solution to this problem. In this study, we present a detailed survey of applications of FL for healthcare informatics. We initiate a discussion on the need for FL in the healthcare domain, followed by a review of recent review papers. We focus on the fundamentals of FL and the major motivations behind FL for healthcare applications. We then present the applications of FL along with recent state of the art in several verticals of healthcare. Then, lessons learned, open issues, and challenges that are yet to be solved are also highlighted. This is followed by future directions that give directions to the prospective researchers willing to do their research in this domain.

Dasaradharami Reddy K, Gadekallu Thippa Reddy

2023

Public Health Public Health

Next Generation Infectious Diseases Monitoring Gages via Incremental Federated Learning: Current Trends and Future Possibilities.

In Computational intelligence and neuroscience

Infectious diseases are always alarming for the survival of human life and are a key concern in the public health domain. Therefore, early diagnosis of these infectious diseases is a high demand for modern-era healthcare systems. Novel general infectious diseases such as coronavirus are infectious diseases that cause millions of human deaths across the globe in 2020. Therefore, early, robust recognition of general infectious diseases is the desirable requirement of modern intelligent healthcare systems. This systematic study is designed under Kitchenham guidelines and sets different RQs (research questions) for robust recognition of general infectious diseases. From 2018 to 2021, four electronic databases, IEEE, ACM, Springer, and ScienceDirect, are used for the extraction of research work. These extracted studies delivered different schemes for the accurate recognition of general infectious diseases through different machine learning techniques with the inclusion of deep learning and federated learning models. A framework is also introduced to share the process of detection of infectious diseases by using machine learning models. After the filtration process, 21 studies are extracted and mapped to defined RQs. In the future, early diagnosis of infectious diseases will be possible through wearable health monitoring cages. Moreover, these gages will help to reduce the time and death rate by detection of severe diseases at starting stage.

Javed Iqra, Iqbal Uzair, Bilal Muhammad, Shahzad Basit, Chung Tae-Sun, Attique Muhammad

2023

General General

Biometric Authentication and Correlation Analysis Based on CNN-SRU Hybrid Neural Network Model.

In Computational intelligence and neuroscience

With the continuous development of computer technology, many institutions in society have higher requirements for the efficiency and reliability of identification systems. In sectors with a high-security level, the use of traditional key and smart card system has been replaced by the identification system of biometric technology. The use of fingerprint and face recognition in biometric technology is a biometric technology that does not constitute an infringement on the human body and is convenient and reliable. The biometric technology has been continuously improved, and the existing biometric technologies are based on unimodal biometric features. The unimodal biometric technology has its own limitations such as proposing single information and checking data affected by the environment, which makes it difficult for the technology to play its advantages in practical applications. In this paper, we use CNN-SRU deep learning to preprocess a large amount of complex data in the perceptual layer. The data collected in the perceptual layer are first transmitted to CNN convolutional neural network for simple classification and analysis and then arrives at the LSTM session to update again and optimize the screening to improve the biometric performance. The results show that the CNN-LSTM, CNN-GRU, and CNN algorithms show a decreasing trend in accuracy under the three error evaluation criteria of RMSE, MAE, and ME, from 0.35 to 0.07, 0.58 to 0.19, and 0.38 to 0.15, respectively. The recognition rate of multifeature fusion can reach 95.2%; the recognition efficiency of the multibiometric authentication system and accuracy rate has been significantly improved. It provides a strong guarantee for the regional standardization, high integration, generalization, and modularization of multibiometric identification system application products.

Zhang Houding, Yang Zexian

2023

Surgery Surgery

Machine Learning Techniques for Antimicrobial Resistance Prediction of Pseudomonas Aeruginosa from Whole Genome Sequence Data.

In Computational intelligence and neuroscience

AIM : Due to the growing availability of genomic datasets, machine learning models have shown impressive diagnostic potential in identifying emerging and reemerging pathogens. This study aims to use machine learning techniques to develop and compare a model for predicting bacterial resistance to a panel of 12 classes of antibiotics using whole genome sequence (WGS) data of Pseudomonas aeruginosa.

METHOD : A machine learning technique called Random Forest (RF) and BioWeka was used for classification accuracy assessment and logistic regression (LR) for statistical analysis.

RESULTS : Our results show 44.66% of isolates were resistant to twelve antimicrobial agents and 55.33% were sensitive. The mean classification accuracy was obtained ≥98% for BioWeka and ≥96 for RF on these families of antimicrobials. Where ampicillin was 99.31% and 94.00%, amoxicillin was 99.02% and 95.21%, meropenem was 98.27% and 96.63%, cefepime was 99.73% and 98.34%, fosfomycin was 96.44% and 99.23%, ceftazidime was 98.63% and 94.31%, chloramphenicol was 98.71% and 96.00%, erythromycin was 95.76% and 97.63%, tetracycline was 99.27% and 98.25%, gentamycin was 98.00% and 97.30%, butirosin was 99.57% and 98.03%, and ciprofloxacin was 96.17% and 98.97% with 10-fold-cross validation. In addition, out of twelve, eight drugs have found no false-positive and false-negative bacterial strains.

CONCLUSION : The ability to accurately detect antibiotic resistance could help clinicians make educated decisions about empiric therapy based on the local antibiotic resistance pattern. Moreover, infection prevention may have major consequences if such prescribing practices become widespread for human health.

Noman Sohail M, Zeeshan Muhammad, Arshad Jehangir, Deressa Amentie Melkamu, Shafiq Muhammad, Yuan Yumeng, Zeng Mi, Li Xin, Xie Qingdong, Jiao Xiaoyang

2023

Surgery Surgery

Supervised Machine Learning Based Noninvasive Prediction of Atrial Flutter Mechanism from P-to-P Interval Variability under Imbalanced Dataset Conditions.

In Computational intelligence and neuroscience

Atrial flutter (AFL) is a common arrhythmia with two significant mechanisms, namely, focal (FAFL) and macroreentry (MAFL). Discrimination of the AFL mechanism through noninvasive techniques can improve radiofrequency ablation efficacy. This study aims to differentiate the AFL mechanism using a 12-lead surface electrocardiogram. P-P interval series variability is hypothesized to be different in FAFL and MAFL and may be useful for discrimination. 12-lead ECG signals were collected from 46 patients with known AFL mechanisms. Features for a proposed classifier are extracted through descriptive statistics of the interval series. On the other hand, the class ratio of MAFL and FAFL was 41 : 5, respectively, which was highly imbalanced. To resolve this, different data augmentation techniques (SMOTE, modified-SMOTE, and smoothed-bootstrap) have been applied on the interval series to generate synthetic interval series and minimize imbalance. Modification is introduced in the classic SMOTE technique (modified-SMOTE) to properly produce data samples from the original distribution. The characteristics of modified-SMOTE are found closer to the original dataset than the other two techniques based on the four validation criteria. The performance of the proposed model has been evaluated by three linear classifiers, namely, linear discriminant analysis (LDA), logistic regression (LOG), and support vector machine (SVM). Filter and wrapper methods have been used for selecting relevant features. The best average performance was achieved at 400% augmentation of the FAFL interval series (90.24% sensitivity, 49.50% specificity, and 76.88% accuracy) in the LOG classifier. The variation of consecutive P-wave intervals has been shown as an effective concept that differentiates FAFL from MAFL through the 12-lead surface ECG.

Gul Muhammad Usman, Kamarul Azman Muhammad Haziq, Kadir Kushsairy Abdul, Shah Jawad Ali, Hussen Seada

2023

General General

Retracted: Design of Financial Risk Control Model Based on Deep Learning Neural Network.

In Computational intelligence and neuroscience

[This retracts the article DOI: 10.1155/2022/5842039.].

Neuroscience Computational Intelligence And

2023