Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

The predictive skill of convolutional neural networks models for disease forecasting.

In PloS one ; h5-index 176.0

In this paper we investigate the utility of one-dimensional convolutional neural network (CNN) models in epidemiological forecasting. Deep learning models, in particular variants of recurrent neural networks (RNNs) have been studied for ILI (Influenza-Like Illness) forecasting, and have achieved a higher forecasting skill compared to conventional models such as ARIMA. In this study, we adapt two neural networks that employ one-dimensional temporal convolutional layers as a primary building block-temporal convolutional networks and simple neural attentive meta-learners-for epidemiological forecasting. We then test them with influenza data from the US collected over 2010-2019. We find that epidemiological forecasting with CNNs is feasible, and their forecasting skill is comparable to, and at times, superior to, plain RNNs. Thus CNNs and RNNs bring the power of nonlinear transformations to purely data-driven epidemiological models, a capability that heretofore has been limited to more elaborate mechanistic/compartmental disease models.

Lee Kookjin, Ray Jaideep, Safta Cosmin

2021

General General

Exploration of physiological sensors, features, and machine learning models for pain intensity estimation.

In PloS one ; h5-index 176.0

In current clinical settings, typically pain is measured by a patient's self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain intensity estimation machine learning models using inputs from physiological sensors. This study uses BioVid Heat Pain Dataset. We extracted features from Electrodermal Activity (EDA), Electrocardiogram (ECG), Electromyogram (EMG) signals collected from study participants subjected to heat pain. We built different machine learning models, including Linear Regression, Support Vector Regression (SVR), Neural Networks and Extreme Gradient Boosting for continuous value pain intensity estimation. Then we identified the physiological sensor, feature set and machine learning model that give the best predictive performance. We found that EDA is the most information-rich sensor for continuous pain intensity prediction. A set of only 3 features from EDA signals using SVR model gave an average performance of 0.93 mean absolute error (MAE) and 1.16 root means square error (RMSE) for the subject-independent model and of 0.92 MAE and 1.13 RMSE for subject-dependent. The MAE achieved with signal-feature-model combination is less than 1 unit on 0 to 4 continues pain scale, which is smaller than the MAE achieved by the methods reported in the literature. These results demonstrate that it is possible to estimate pain intensity of a patient using a computationally inexpensive machine learning model with 3 statistical features from EDA signal which can be collected from a wrist biosensor. This method paves a way to developing a wearable pain measurement device.

Pouromran Fatemeh, Radhakrishnan Srinivasan, Kamarthi Sagar

2021

General General

Text classification to streamline online wildlife trade analyses.

In PloS one ; h5-index 176.0

Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practitioners. Given that many wildlife-trade advertisements have an unstructured text format, automated identification of relevant listings has not traditionally been possible, nor attempted. Other scientific disciplines have solved similar problems using machine learning and natural language processing models, such as text classifiers. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from wildlife trade occurring on the Internet. We collected data from an Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k advertisements). We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant (ROC AUC ≥ 0.98, F1 score ≥ 0.77). Furthermore, in an attempt to answer the question 'how much data is required to have an adequately performing model?', we conducted a sensitivity analysis by simulating decreases in sample sizes to measure the subsequent change in model performance. From our sensitivity analysis, we found that text classifiers required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for our dataset), providing a reference point for future applications of this sort. Our results suggest that text classification is a viable tool that can be applied to the online trade of wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary depending on the advertisements and websites, and will therefore be context dependent. Further work to integrate other machine learning tools, such as image classification, may provide better predictive abilities in the context of streamlining data processing for wildlife trade related online data.

Stringham Oliver C, Moncayo Stephanie, Hill Katherine G W, Toomes Adam, Mitchell Lewis, Ross Joshua V, Cassey Phillip

2021

General General

Personalized Real-Time Federated Learning for Epileptic Seizure Detection.

In IEEE journal of biomedical and health informatics

Epilepsy is one of the most prevalent paroxystic neurological disorders. It is characterized by the occurrence of spontaneous seizures. About 1 out of 3 patients have drug-resistant epilepsy, thus their seizures cannot be controlled by medication. Automatic detection of epileptic seizures can substantially improve the patient's quality of life. To achieve a high-quality model, we have to collect data from various patients in a central server. However, sending the patient's raw data to this central server puts patient privacy at risk and consumes a significant amount of energy. To address these challenges, in this work, we have designed and evaluated a standard federated learning framework in the context of epileptic seizure detection using a deep learning-based approach, which operates across a cluster of machines. We evaluated the accuracy and performance of our proposed approach on the NVIDIA Jetson Nano Developer Kit based on the EPILEPSIAE database, which is one of the largest public epilepsy datasets for seizure detection. Our proposed framework achieved a sensitivity of 81.25%, a specificity of 82.00%, and a geometric mean of 81.62%. It can be implemented on embedded platforms that complete the entire training process in 1.86 hours using 344.34 mAh energy on a single battery charge. We also studied a personalized variant of the federated learning, where each machine is responsible for training a deep neural network (DNN) to learn the discriminative electrocardiography (ECG) features of the epileptic seizures of the specific person monitored based on its local data. In this context, the DNN benefitted from a well-trained model without sharing the patient's raw data with a server or a central cloud repository. We observe in our results that personalized federated learning provides an increase in all the performance metric, with a sensitivity of 90.24%, a specificity of 91.58%, and a geometric mean of 90.90%.

Baghersalimi Saleh, Teijeiro Tomas, Atienza David, Aminifar Amir

2021-Jul-09

General General

Single-cell classification using graph convolutional networks.

In BMC bioinformatics

BACKGROUND : Analyzing single-cell RNA sequencing (scRNAseq) data plays an important role in understanding the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area is the identification of cell types. With the availability of a huge amount of single cell sequencing data and discovering more and more cell types, classifying cells into known cell types has become a priority nowadays. Several methods have been introduced to classify cells utilizing gene expression data. However, incorporating biological gene interaction networks has been proved valuable in cell classification procedures.

RESULTS : In this study, we propose a multimodal end-to-end deep learning model, named sigGCN, for cell classification that combines a graph convolutional network (GCN) and a neural network to exploit gene interaction networks. We used standard classification metrics to evaluate the performance of the proposed method on the within-dataset classification and the cross-dataset classification. We compared the performance of the proposed method with those of the existing cell classification tools and traditional machine learning classification methods.

CONCLUSIONS : Results indicate that the proposed method outperforms other commonly used methods in terms of classification accuracy and F1 scores. This study shows that the integration of prior knowledge about gene interactions with gene expressions using GCN methodologies can extract effective features improving the performance of cell classification.

Wang Tianyu, Bai Jun, Nabavi Sheida

2021-Jul-08

Cell classification, Convolutional neural network, Deep learning, Graph convolutional neural network, Single cell RNA sequencing

General General

ISCL: Interdependent Self-Cooperative Learning for Unpaired Image Denoising.

In IEEE transactions on medical imaging ; h5-index 74.0

With the advent of advances in self-supervised learning, paired clean-noisy data are no longer required in deep learning-based image denoising. However, existing blind denoising methods still require the assumption with regard to noise characteristics, such as zero-mean noise distribution and pixel-wise noise-signal independence; this hinders wide adaptation of the method in the medical domain. On the other hand, unpaired learning can overcome limitations related to the assumption on noise characteristics, which makes it more feasible for collecting the training data in real-world scenarios. In this paper, we propose a novel image denoising scheme, Interdependent Self-Cooperative Learning (ISCL), that leverages unpaired learning by combining cyclic adversarial learning with self-supervised residual learning. Unlike the existing unpaired image denoising methods relying on matching data distributions in different domains, the two architectures in ISCL, designed for different tasks, complement each other and boost the learning process. To assess the performance of the proposed method, we conducted extensive experiments in various biomedical image degradation scenarios, such as noise caused by physical characteristics of electron microscopy (EM) devices (film and charging noise), and structural noise found in low-dose computer tomography (CT). We demonstrate that the image quality of our method is superior to conventional and current state-of-the-art deep learning-based unpaired image denoising methods.

Lee Kanggeun, Jeong Won-Ki

2021-Jul-09