Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

Recommendation as generalization: Using big data to evaluate cognitive models.

In Journal of experimental psychology. General

The explosion of data generated during human interactions online presents an opportunity for psychologists to evaluate cognitive models outside the confines of the laboratory. Moreover, the size of these online data sets can allow researchers to construct far richer models than would be feasible with smaller in-lab behavioral data. In the current article, we illustrate this potential by evaluating 3 popular psychological models of generalization on 2 web-scale online data sets typically used to build automated recommendation systems. We show that each psychological model can be efficiently implemented at scale and in certain cases can capture trends in human judgments that standard recommendation systems from machine learning miss. We use these results to illustrate the opportunity Internet-scale data sets offer to psychologists and to underscore the importance of using insights from cognitive modeling to supplement the standard predictive-analytic approach taken by many existing machine learning approaches. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

Bourgin David D, Abbott Joshua T, Griffiths Thomas L

2020-Dec-03

Radiology Radiology

Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis.

In EMBO molecular medicine

Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post-mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.

Placek Katerina, Benatar Michael, Wuu Joanne, Rampersaud Evadnie, Hennessy Laura, Van Deerlin Vivianna M, Grossman Murray, Irwin David J, Elman Lauren, McCluskey Leo, Quinn Colin, Granit Volkan, Statland Jeffrey M, Burns Ted M, Ravits John, Swenson Andrea, Katz Jon, Pioro Erik P, Jackson Carlayne, Caress James, So Yuen, Maiser Samuel, Walk David, Lee Edward B, Trojanowski John Q, Cook Philip, Gee James, Sha Jin, Naj Adam C, Rademakers Rosa, Chen Wenan, Wu Gang, Paul Taylor J, McMillan Corey T

2020-Dec-03

amyotrophic lateral sclerosis, cognition, frontotemporal dementia, machine learning, polygenic score

General General

Polish is quantitatively different on quartzite flakes used on different worked materials.

In PloS one ; h5-index 176.0

Metrology has been successfully used in the last decade to quantify use-wear on stone tools. Such techniques have been mostly applied to fine-grained rocks (chert), while studies on coarse-grained raw materials have been relatively infrequent. In this study, confocal microscopy was employed to investigate polished surfaces on a coarse-grained lithology, quartzite. Wear originating from contact with five different worked materials were classified in a data-driven approach using machine learning. Two different classifiers, a decision tree and a support-vector machine, were used to assign the different textures to a worked material based on a selected number of parameters (Mean density of furrows, Mean depth of furrows, Core material volume-Vmc). The method proved successful, presenting high scores for bone and hide (100%). The obtained classification rates are satisfactory for the other worked materials, with the only exception of cane, which shows overlaps with other materials. Although the results presented here are preliminary, they can be used to develop future studies on quartzite including enlarged sample sizes.

Pedergnana Antonella, Calandra Ivan, Evans Adrian A, Bob Konstantin, Hildebrandt Andreas, Ollé Andreu

2020

General General

Deep learning based automatic segmentation of metastasis hotspots in thorax bone SPECT images.

In PloS one ; h5-index 176.0

SPECT imaging has been identified as an effective medical modality for diagnosis, treatment, evaluation and prevention of a range of serious diseases and medical conditions. Bone SPECT scan has the potential to provide more accurate assessment of disease stage and severity. Segmenting hotspot in bone SPECT images plays a crucial role to calculate metrics like tumor uptake and metabolic tumor burden. Deep learning techniques especially the convolutional neural networks have been widely exploited for reliable segmentation of hotspots or lesions, organs and tissues in the traditional structural medical images (i.e., CT and MRI) due to their ability of automatically learning the features from images in an optimal way. In order to segment hotspots in bone SPECT images for automatic assessment of metastasis, in this work, we develop several deep learning based segmentation models. Specifically, each original whole-body bone SPECT image is processed to extract the thorax area, followed by image mirror, translation and rotation operations, which augments the original dataset. We then build segmentation models based on two commonly-used famous deep networks including U-Net and Mask R-CNN by fine-tuning their structures. Experimental evaluation conducted on a group of real-world bone SEPCT images reveals that the built segmentation models are workable on identifying and segmenting hotspots of metastasis in bone SEPCT images, achieving a value of 0.9920, 0.7721, 0.6788 and 0.6103 for PA (accuracy), CPA (precision), Rec (recall) and IoU, respectively. Finally, we conclude that the deep learning technology have the huge potential to identify and segment hotspots in bone SPECT images.

Lin Qiang, Luo Mingyang, Gao Ruiting, Li Tongtong, Man Zhengxing, Cao Yongchun, Wang Haijun

2020

General General

Machine learning-based e-commerce platform repurchase customer prediction model.

In PloS one ; h5-index 176.0

In recent years, China's e-commerce industry has developed at a high speed, and the scale of various industries has continued to expand. Service-oriented enterprises such as e-commerce transactions and information technology came into being. This paper analyzes the shortcomings and challenges of traditional online shopping behavior prediction methods, and proposes an online shopping behavior analysis and prediction system. The paper chooses linear model logistic regression and decision tree based XGBoost model. After optimizing the model, it is found that the nonlinear model can make better use of these features and get better prediction results. In this paper, we first combine the single model, and then use the model fusion algorithm to fuse the prediction results of the single model. The purpose is to avoid the accuracy of the linear model easy to fit and the decision tree model over-fitting. The results show that the model constructed by the article has further improvement than the single model. Finally, through two sets of contrast experiments, it is proved that the algorithm selected in this paper can effectively filter the features, which simplifies the complexity of the model to a certain extent and improves the classification accuracy of machine learning. The XGBoost hybrid model based on p/n samples is simpler than a single model. Machine learning models are not easily over-fitting and therefore more robust.

Liu Cheng-Ju, Huang Tien-Shou, Ho Ping-Tsan, Huang Jui-Chan, Hsieh Ching-Tang

2020

General General

A deep facial recognition system using computational intelligent algorithms.

In PloS one ; h5-index 176.0

The development of biometric applications, such as facial recognition (FR), has recently become important in smart cities. Many scientists and engineers around the world have focused on establishing increasingly robust and accurate algorithms and methods for these types of systems and their applications in everyday life. FR is developing technology with multiple real-time applications. The goal of this paper is to develop a complete FR system using transfer learning in fog computing and cloud computing. The developed system uses deep convolutional neural networks (DCNN) because of the dominant representation; there are some conditions including occlusions, expressions, illuminations, and pose, which can affect the deep FR performance. DCNN is used to extract relevant facial features. These features allow us to compare faces between them in an efficient way. The system can be trained to recognize a set of people and to learn via an online method, by integrating the new people it processes and improving its predictions on the ones it already has. The proposed recognition method was tested with different three standard machine learning algorithms (Decision Tree (DT), K Nearest Neighbor(KNN), Support Vector Machine (SVM)). The proposed system has been evaluated using three datasets of face images (SDUMLA-HMT, 113, and CASIA) via performance metrics of accuracy, precision, sensitivity, specificity, and time. The experimental results show that the proposed method achieves superiority over other algorithms according to all parameters. The suggested algorithm results in higher accuracy (99.06%), higher precision (99.12%), higher recall (99.07%), and higher specificity (99.10%) than the comparison algorithms.

Salama AbdELminaam Diaa, Almansori Abdulrhman M, Taha Mohamed, Badr Elsayed

2020