Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

Surgery Surgery

A novel machine-learning algorithm for predicting mortality risk after hip fracture surgery.

In Injury ; h5-index 49.0

INTRODUCTION : Although several risk stratification models have been developed to predict hip fracture mortality, efforts are still being placed in this area. Our aim is to (1) construct a risk prediction model for long-term mortality after hip fracture utilizing the RSF method and (2) to evaluate the changing effects over time of individual pre- and post-treatment variables on predicting mortality.

METHODS : 1330 hip fracture surgical patients were included. Forty-five admission and in-hospital variables were analyzed as potential predictors of all-cause mortality. A random survival forest (RSF) algorithm was applied in predictors identification. Cox regression models were then constructed. Sensitivity analyses and internal validation were performed to assess the performance of each model. C statistics were calculated and model calibrations were further assessed.

RESULTS : Our machine-learning RSF algorithm achieved a c statistic of 0.83 for 30-day prediction and 0.75 for 1-year mortality. Additionally, a COX model was also constructed by using the variables selected by RSF, c statistics were shown as 0.75 and 0.72 when applying in 2-year and 4-year mortality prediction. The presence of post-operative complications remained as the strongest risk factor for both short- and long-term mortality. Variables including fracture location, high serum creatinine, age, hypertension, anemia, ASA, hypoproteinemia, abnormal BUN, and RDW became more important as the length of follow-up increased.

CONCLUSION : The RSF machine-learning algorithm represents a novel approach to identify important risk factors and a risk stratification models for patients undergoing hip fracture surgery is built through this approach to identify those at high risk of long-term mortality.

Li Yi, Chen Ming, Lv Houchen, Yin Pengbin, Zhang Licheng, Tang Peifu

2020-Dec-30

Hip fracture, Mortality, Random forest, Random survival forest, Risk stratification model

General General

A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images.

In Interdisciplinary sciences, computational life sciences

Corona virus disease (COVID-19) acknowledged as a pandemic by the WHO and mankind all over the world is vulnerable to this virus. Alternative tools are needed that can help in diagnosis of the coronavirus. Researchers of this article investigated the potential of machine learning methods for automatic diagnosis of corona virus with high accuracy from X-ray images. Two most commonly used classifiers were selected: logistic regression (LR) and convolutional neural networks (CNN). The main reason was to make the system fast and efficient. Moreover, a dimensionality reduction approach was also investigated based on principal component analysis (PCA) to further speed up the learning process and improve the classification accuracy by selecting the highly discriminate features. The deep learning-based methods demand large amount of training samples compared to conventional approaches, yet adequate amount of labelled training samples was not available for COVID-19 X-ray images. Therefore, data augmentation technique using generative adversarial network (GAN) was employed to further increase the training samples and reduce the overfitting problem. We used the online available dataset and incorporated GAN to have 500 X-ray images in total for this study. Both CNN and LR showed encouraging results for COVID-19 patient identification. The LR and CNN models showed 95.2-97.6% overall accuracy without PCA and 97.6-100% with PCA for positive cases identification, respectively.

Rasheed Jawad, Hameed Alaa Ali, Djeddi Chawki, Jamil Akhtar, Al-Turjman Fadi

2021-Jan-02

Artificial neural network, COVID-19, Computer-aided diagnosis, Image classification, Principal component analysis

General General

Predicting hypotension in the ICU using noninvasive physiological signals.

In Computers in biology and medicine

Hypotension frequently occurs in Intensive Care Units (ICU), and its early prediction can improve the outcome of patient care. Trends observed in signals related to blood pressure (BP) are critical in predicting future events. Unfortunately, the invasive measurement of BP signals is neither comfortable nor feasible in all bed settings. In this study, we investigate the performance of machine-learning techniques in predicting hypotensive events in ICU settings using physiological signals that can be obtained noninvasively. We show that noninvasive mean arterial pressure (NIMAP) can be simulated by down-sampling the invasively measured MAP. This enables us to investigate the effect of BP measurement frequency on the algorithm's performance by training and testing the algorithm on a large dataset provided by the MIMIC III database. This study shows that having NIMAP information is essential for adequate predictive performance. The proposed predictive algorithm can flag hypotension with a sensitivity of 84%, positive predictive value (PPV) of 73%, and F1-score of 78%. Furthermore, the predictive performance of the algorithm improves by increasing the frequency of BP sampling.

Moghadam Mina Chookhachizadeh, Masoumi Ehsan, Kendale Samir, Bagherzadeh Nader

2020-Nov-20

Hypotenstion prediction, ICU, Machine-learning, Noninvasive physiological signals

Public Health Public Health

Network machine learning maps phytochemically rich "Hyperfoods" to fight COVID-19.

In Human genomics

In this paper, we introduce a network machine learning method to identify potential bioactive anti-COVID-19 molecules in foods based on their capacity to target the SARS-CoV-2-host gene-gene (protein-protein) interactome. Our analyses were performed using a supercomputing DreamLab App platform, harnessing the idle computational power of thousands of smartphones. Machine learning models were initially calibrated by demonstrating that the proposed method can predict anti-COVID-19 candidates among experimental and clinically approved drugs (5658 in total) targeting COVID-19 interactomics with the balanced classification accuracy of 80-85% in 5-fold cross-validated settings. This identified the most promising drug candidates that can be potentially "repurposed" against COVID-19 including common drugs used to combat cardiovascular and metabolic disorders, such as simvastatin, atorvastatin and metformin. A database of 7694 bioactive food-based molecules was run through the calibrated machine learning algorithm, which identified 52 biologically active molecules, from varied chemical classes, including flavonoids, terpenoids, coumarins and indoles predicted to target SARS-CoV-2-host interactome networks. This in turn was used to construct a "food map" with the theoretical anti-COVID-19 potential of each ingredient estimated based on the diversity and relative levels of candidate compounds with antiviral properties. We expect this in silico predicted food map to play an important role in future clinical studies of precision nutrition interventions against COVID-19 and other viral diseases.

Laponogov Ivan, Gonzalez Guadalupe, Shepherd Madelen, Qureshi Ahad, Veselkov Dennis, Charkoftaki Georgia, Vasiliou Vasilis, Youssef Jozef, Mirnezami Reza, Bronstein Michael, Veselkov Kirill

2021-01-02

Antiviral, COVID-19, Drug repositioning, Food, Gene-gene networks, Interactomics, Machine learning, SARS-CoV-2

Public Health Public Health

Network machine learning maps phytochemically rich "Hyperfoods" to fight COVID-19.

In Human genomics

In this paper, we introduce a network machine learning method to identify potential bioactive anti-COVID-19 molecules in foods based on their capacity to target the SARS-CoV-2-host gene-gene (protein-protein) interactome. Our analyses were performed using a supercomputing DreamLab App platform, harnessing the idle computational power of thousands of smartphones. Machine learning models were initially calibrated by demonstrating that the proposed method can predict anti-COVID-19 candidates among experimental and clinically approved drugs (5658 in total) targeting COVID-19 interactomics with the balanced classification accuracy of 80-85% in 5-fold cross-validated settings. This identified the most promising drug candidates that can be potentially "repurposed" against COVID-19 including common drugs used to combat cardiovascular and metabolic disorders, such as simvastatin, atorvastatin and metformin. A database of 7694 bioactive food-based molecules was run through the calibrated machine learning algorithm, which identified 52 biologically active molecules, from varied chemical classes, including flavonoids, terpenoids, coumarins and indoles predicted to target SARS-CoV-2-host interactome networks. This in turn was used to construct a "food map" with the theoretical anti-COVID-19 potential of each ingredient estimated based on the diversity and relative levels of candidate compounds with antiviral properties. We expect this in silico predicted food map to play an important role in future clinical studies of precision nutrition interventions against COVID-19 and other viral diseases.

Laponogov Ivan, Gonzalez Guadalupe, Shepherd Madelen, Qureshi Ahad, Veselkov Dennis, Charkoftaki Georgia, Vasiliou Vasilis, Youssef Jozef, Mirnezami Reza, Bronstein Michael, Veselkov Kirill

2021-01-02

Antiviral, COVID-19, Drug repositioning, Food, Gene-gene networks, Interactomics, Machine learning, SARS-CoV-2

General General

Combining unsupervised and supervised learning for predicting the final stroke lesion.

In Medical image analysis

Predicting the final ischaemic stroke lesion provides crucial information regarding the volume of salvageable hypoperfused tissue, which helps physicians in the difficult decision-making process of treatment planning and intervention. Treatment selection is influenced by clinical diagnosis, which requires delineating the stroke lesion, as well as characterising cerebral blood flow dynamics using neuroimaging acquisitions. Nonetheless, predicting the final stroke lesion is an intricate task, due to the variability in lesion size, shape, location and the underlying cerebral haemodynamic processes that occur after the ischaemic stroke takes place. Moreover, since elapsed time between stroke and treatment is related to the loss of brain tissue, assessing and predicting the final stroke lesion needs to be performed in a short period of time, which makes the task even more complex. Therefore, there is a need for automatic methods that predict the final stroke lesion and support physicians in the treatment decision process. We propose a fully automatic deep learning method based on unsupervised and supervised learning to predict the final stroke lesion after 90 days. Our aim is to predict the final stroke lesion location and extent, taking into account the underlying cerebral blood flow dynamics that can influence the prediction. To achieve this, we propose a two-branch Restricted Boltzmann Machine, which provides specialized data-driven features from different sets of standard parametric Magnetic Resonance Imaging maps. These data-driven feature maps are then combined with the parametric Magnetic Resonance Imaging maps, and fed to a Convolutional and Recurrent Neural Network architecture. We evaluated our proposal on the publicly available ISLES 2017 testing dataset, reaching a Dice score of 0.38, Hausdorff Distance of 29.21 mm, and Average Symmetric Surface Distance of 5.52 mm.

Pinto Adriano, Pereira Sérgio, Meier Raphael, Wiest Roland, Alves Victor, Reyes Mauricio, Silva Carlos A

2020-Dec-24

Deep learning, Image prediction, Magnetic resonance imaging, Stroke