Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

General General

IRCM-Caps: An X-ray image detection method for COVID-19.

In The clinical respiratory journal

OBJECTIVE : COVID-19 is ravaging the world, but traditional reverse transcription-polymerase reaction (RT-PCR) tests are time-consuming and have a high false-negative rate and lack of medical equipment. Therefore, lung imaging screening methods are proposed to diagnose COVID-19 due to its fast test speed. Currently, the commonly used convolutional neural network (CNN) model requires a large number of datasets, and the accuracy of the basic capsule network for multiple classification is limital. For this reason, this paper proposes a novel model based on CNN and CapsNet.

METHODS : The proposed model integrates CNN and CapsNet. And attention mechanism module and multi-branch lightweight module are applied to enhance performance. Use the contrast adaptive histogram equalization (CLAHE) algorithm to preprocess the image to enhance image contrast. The preprocessed images are input into the network for training, and ReLU was used as the activation function to adjust the parameters to achieve the optimal.

RESULT : The test dataset includes 1200 X-ray images (400 COVID-19, 400 viral pneumonia, and 400 normal), and we replace CNN of VGG16, InceptionV3, Xception, Inception-Resnet-v2, ResNet50, DenseNet121, and MoblieNetV2 and integrate with CapsNet. Compared with CapsNet, this network improves 6.96%, 7.83%, 9.37%, 10.47%, and 10.38% in accuracy, area under the curve (AUC), recall, and F1 scores, respectively. In the binary classification experiment, compared with CapsNet, the accuracy, AUC, accuracy, recall rate, and F1 score were increased by 5.33%, 5.34%, 2.88%, 8.00%, and 5.56%, respectively.

CONCLUSION : The proposed embedded the advantages of traditional convolutional neural network and capsule network and has a good classification effect on small COVID-19 X-ray image dataset.

Qiu Shuo, Ma Jinlin, Ma Ziping

2023-Mar-15

CNN, COVID-19, CapseNet, X-ray, cascade network, deep learning

General General

IRCM-Caps: An X-ray image detection method for COVID-19.

In The clinical respiratory journal

OBJECTIVE : COVID-19 is ravaging the world, but traditional reverse transcription-polymerase reaction (RT-PCR) tests are time-consuming and have a high false-negative rate and lack of medical equipment. Therefore, lung imaging screening methods are proposed to diagnose COVID-19 due to its fast test speed. Currently, the commonly used convolutional neural network (CNN) model requires a large number of datasets, and the accuracy of the basic capsule network for multiple classification is limital. For this reason, this paper proposes a novel model based on CNN and CapsNet.

METHODS : The proposed model integrates CNN and CapsNet. And attention mechanism module and multi-branch lightweight module are applied to enhance performance. Use the contrast adaptive histogram equalization (CLAHE) algorithm to preprocess the image to enhance image contrast. The preprocessed images are input into the network for training, and ReLU was used as the activation function to adjust the parameters to achieve the optimal.

RESULT : The test dataset includes 1200 X-ray images (400 COVID-19, 400 viral pneumonia, and 400 normal), and we replace CNN of VGG16, InceptionV3, Xception, Inception-Resnet-v2, ResNet50, DenseNet121, and MoblieNetV2 and integrate with CapsNet. Compared with CapsNet, this network improves 6.96%, 7.83%, 9.37%, 10.47%, and 10.38% in accuracy, area under the curve (AUC), recall, and F1 scores, respectively. In the binary classification experiment, compared with CapsNet, the accuracy, AUC, accuracy, recall rate, and F1 score were increased by 5.33%, 5.34%, 2.88%, 8.00%, and 5.56%, respectively.

CONCLUSION : The proposed embedded the advantages of traditional convolutional neural network and capsule network and has a good classification effect on small COVID-19 X-ray image dataset.

Qiu Shuo, Ma Jinlin, Ma Ziping

2023-Mar-15

CNN, COVID-19, CapseNet, X-ray, cascade network, deep learning

Ophthalmology Ophthalmology

Reliable Multimodality Eye Disease Screening via Mixture of Student's t Distributions

ArXiv Preprint

Multimodality eye disease screening is crucial in ophthalmology as it integrates information from diverse sources to complement their respective performances. However, the existing methods are weak in assessing the reliability of each unimodality, and directly fusing an unreliable modality may cause screening errors. To address this issue, we introduce a novel multimodality evidential fusion pipeline for eye disease screening, EyeMoS$t$, which provides a measure of confidence for unimodality and elegantly integrates the multimodality information from a multi-distribution fusion perspective. Specifically, our model estimates both local uncertainty for unimodality and global uncertainty for the fusion modality to produce reliable classification results. More importantly, the proposed mixture of Student's $t$ distributions adaptively integrates different modalities to endow the model with heavy-tailed properties, increasing robustness and reliability. Our experimental findings on both public and in-house datasets show that our model is more reliable than current methods. Additionally, EyeMos$t$ has the potential ability to serve as a data quality discriminator, enabling reliable decision-making for multimodality eye disease screening.

Ke Zou, Tian Lin, Xuedong Yuan, Haoyu Chen, Xiaojing Shen, Meng Wang, Huazhu Fu

2023-03-17

General General

Multi-weight susceptible-infected model for predicting COVID-19 in China.

In Neurocomputing

The mutant strains of COVID-19 caused a global explosion of infections, including many cities of China. In 2020, a hybrid AI model was proposed by Zheng et al., which accurately predicted the epidemic in Wuhan. As the main part of the hybrid AI model, ISI method makes two important assumptions to avoid over-fitting. However, the assumptions cannot be effectively applied to new mutant strains. In this paper, a more general method, named the multi-weight susceptible-infected model (MSI) is proposed to predict COVID-19 in Chinese Mainland. First, a Gaussian pre-processing method is proposed to solve the problem of data fluctuation based on the quantity consistency of cumulative infection number and the trend consistency of daily infection number. Then, we improve the model from two aspects: changing the grouped multi-parameter strategy to the multi-weight strategy, and removing the restriction of weight distribution of viral infectivity. Experiments on the outbreaks in many places in China from the end of 2021 to May 2022 show that, in China, an individual infected by Delta or Omicron strains of SARS-CoV-2 can infect others within 3-4 days after he/she got infected. Especially, the proposed method effectively predicts the trend of the epidemics in Xi'an, Tianjin, Henan, and Shanghai from December 2021 to May 2022.

Zhang Jun, Zheng Nanning, Liu Mingyu, Yao Dingyi, Wang Yusong, Wang Jianji, Xin Jingmin

2023-May-14

COVID-19 prediction, Data processing, Epidemic model, Multi-weight susceptible-infected model

General General

A novel prognostic model for patients with colon adenocarcinoma.

In Frontiers in endocrinology ; h5-index 55.0

BACKGROUND : Colon adenocarcinoma (COAD) is a highly heterogeneous disease, which makes its prognostic prediction challenging. The purpose of this study was to investigate the clinical epidemiological characteristics, prognostic factors, and survival outcomes of patients with COAD in order to establish and validate a predictive clinical model (nomogram) for these patients.

METHODS : Using the SEER (Surveillance, Epidemiology, and End Results) database, we identified patients diagnosed with COAD between 1983 and 2015. Disease-specific survival (DSS) and overall survival (OS) were assessed using the log-rank test and Kaplan-Meier approach. Univariate and multivariate analyses were performed using Cox regression, which identified the independent prognostic factors for OS and DSS. The nomograms constructed to predict OS were based on these independent prognostic factors. The predictive ability of the nomograms was assessed using receiver operating characteristic (ROC) curves and calibration plots, while accuracy was assessed using decision curve analysis (DCA). Clinical utility was evaluated with a clinical impact curve (CIC).

RESULTS : A total of 104,933 patients were identified to have COAD, including 31,479 women and 73,454 men. The follow-up study duration ranged from 22 to 88 months, with an average of 46 months. Multivariate Cox regression analysis revealed that age, gender, race, site_recode_ICD, grade, CS_tumor_size, CS_extension, and metastasis were independent prognostic factors. Nomograms were constructed to predict the probability of 1-, 3-, and 5-year OS and DSS. The concordance index (C-index) and calibration plots showed that the established nomograms had robust predictive ability. The clinical decision chart (from the DCA) and the clinical impact chart (from the CIC) showed good predictive accuracy and clinical utility.

CONCLUSION : In this study, a nomogram model for predicting the individualized survival probability of patients with COAD was constructed and validated. The nomograms of patients with COAD were accurate for predicting the 1-, 3-, and 5-year DSS. This study has great significance for clinical treatments. It also provides guidance for further prospective follow-up studies.

Yin Chengliang, Wang Wanling, Cao Wenzhe, Chen Yuanyuan, Sun Xiaochun, He Kunlun

2023

SEER, colon adenocarcinoma, nomogram, prognosis, risk factors

Surgery Surgery

Identification of biomarkers for the diagnosis of chronic kidney disease (CKD) with non-alcoholic fatty liver disease (NAFLD) by bioinformatics analysis and machine learning.

In Frontiers in endocrinology ; h5-index 55.0

BACKGROUND : Chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) are closely related to immune and inflammatory pathways. This study aimed to explore the diagnostic markers for CKD patients with NAFLD.

METHODS : CKD and NAFLD microarray data sets were screened from the GEO database and analyzed the differentially expressed genes (DEGs) in GSE10495 of CKD date set. Weighted Gene Co-Expression Network Analysis (WGCNA) method was used to construct gene coexpression networks and identify functional modules of NAFLD in GSE89632 date set. Then obtaining NAFLD-related share genes by intersecting DEGs of CKD and modular genes of NAFLD. Then functional enrichment analysis of NAFLD-related share genes was performed. The NAFLD-related hub genes come from intersection of cytoscape software and machine learning. ROC curves were used to examine the diagnostic value of NAFLD related hub genes in the CKD data sets and GSE89632 date set of NAFLD. CIBERSORTx was also used to explore the immune landscape in GSE104954, and the correlation between immune infiltration and hub genes expression was investigated.

RESULTS : A total of 45 NAFLD-related share genes were obtained, and 4 were NAFLD-related hub genes. Enrichment analysis showed that the NAFLD-related share genes were significantly enriched in immune-related pathways, programmed cell death, and inflammatory response. ROC curve confirmed 4 NAFLD-related hub genes in CKD training set GSE104954 and other validation sets. Then they were used as diagnostic markers for CKD. Interestingly, these 4 diagnostic markers of CKD also showed good diagnostic value in the NAFLD date set GSE89632, so these genes may be important targets of NAFLD in the development of CKD. The expression levels of the 4 diagnostic markers for CKD were significantly correlated with the infiltration of immune cells.

CONCLUSION : 4 NAFLD-related genes (DUSP1, NR4A1, FOSB, ZFP36) were identified as diagnostic markers in CKD patients with NAFLD. Our study may provide diagnostic markers and therapeutic targets for CKD patients with NAFLD.

Cao Yang, Du Yiwei, Jia Weili, Ding Jian, Yuan Juzheng, Zhang Hong, Zhang Xuan, Tao Kaishan, Yang Zhaoxu

2023

chronic kidney disease, hub genes, immune, inflammation, non-alcoholic fatty liver disease