Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Ultrasonic imaging

Breast cancer is considered as the most prevalent cancer. Using ultrasound images is a momentous clinical diagnosis method to locate breast tumors. However, accurate segmentation of breast tumors remains an open problem due to ultrasound artifacts, low contrast, and complicated tumor shapes in ultrasound images. To address this issue, we proposed a boundary-oriented network (BO-Net) for boosting breast tumor segmentation in ultrasound images. The BO-Net boosts tumor segmentation performance from two perspectives. Firstly, a boundary-oriented module (BOM) was designed to capture the weak boundaries of breast tumors by learning additional breast tumor boundary maps. Second, we focus on enhanced feature extraction, which takes advantage of the Atrous Spatial Pyramid Pooling (ASPP) module and Squeeze-and-Excitation (SE) block to obtain multi-scale and efficient feature information. We evaluate our network on two public datasets: Dataset B and BUSI. For the Dataset B, our network achieves 0.8685 in Dice, 0.7846 in Jaccard, 0.8604 in Precision, 0.9078 in Recall, and 0.9928 in Specificity. For the BUSI dataset, our network achieves 0.7954 in Dice, 0.7033 in Jaccard, 0.8275 in Precision, 0.8251 in Recall, and 0.9814 in Specificity. Experimental results show that BO-Net outperforms the state-of-the-art segmentation methods for breast tumor segmentation in ultrasound images. It demonstrates that focusing on boundary and feature enhancement creates more efficient and robust breast tumor segmentation.

Zhang Mengmeng, Huang Aibin, Yang Debiao, Xu Rui


U-Net, breast tumors, deep learning, image segmentation, ultrasound images