Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Heliyon

The foundation for the environmental department to take suitable measures and make a significant contribution towards improving air quality is the precise and dependable prediction of PM2.5 concentration. It is essential to review the development process and hotspots of PM2.5 concentration prediction studies over the past 20 years (2000-2021) comprehensively and quantitatively. This study used detailed bibliometric methods and CiteSpace software to visually analyze the PM2.5 pollution level. The outcomes found that the prediction research phases of PM2.5 can be broadly divided into three phases and enter the rapid growth phase after 2017. Five categories of keywords are clustered, and the forecasting data and forecasting methods are typical cluster representatives. Then, the construction and processing of PM2.5 concentration prediction datasets, the prediction methods and technical processes, and the determination of the prediction spatial-temporal scales are the main content of the analysis. In the future, it is necessary to concentrate on multi-source data fusion for PM2.5 concentration prediction at multiple spatial-temporal scales and focus on technology integration and innovative applications in forecasting models, especially the optimal use of deep machine learning methods to improve prediction accuracy and practical application conversion.

Gong Jintao, Ding Lei, Lu Yingyu, Qiong Zhang Yun Li


Contents analysis, Forecasting methods, Forecasting scale, PM2.5 concentration prediction, Scientometric