Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Biomedical optics express

Radiofrequency ablation (RFA) is a minimally invasive procedure that is commonly used for the treatment of atrial fibrillation. However, it is associated with a significant risk of arrhythmia recurrence and complications owing to the lack of direct visualization of cardiac substrates and real-time feedback on ablation lesion transmurality. Within this manuscript, we present an automated deep learning framework for in vivo intracardiac optical coherence tomography (OCT) analysis of swine left atria. Our model can accurately identify cardiac substrates, monitor catheter-tissue contact stability, and assess lesion transmurality on both OCT intensity and polarization-sensitive OCT data. To the best of our knowledge, we have developed the first automatic framework for in vivo cardiac OCT analysis, which holds promise for real-time monitoring and guidance of cardiac RFA therapy..

Huang Ziyi, Zhao Xiaowei, Ziv Ohad, Laurita Kenneth R, Rollins Andrew M, Hendon Christine P