Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European journal of radiology ; h5-index 47.0

A robust cascaded deep learning framework with integrated hippocampal gray matter (HGM) probability map was developed to improve the hippocampus segmentation (called HGM-cNet) due to its significance in various neuropsychiatric disorders such as Alzheimer's disease (AD). Particularly, the HGM-cNet cascaded two identical convolutional neural networks (CNN), where each CNN was devised by incorporating Attention Block, Residual Block, and DropBlock into the typical encoder-decoder architecture. The two CNNs were skip-connected between encoder components at each scale. The adoption of the cascaded deep learning framework was to conveniently incorporate the HGM probability map with the feature map generated by the first CNN. Experiments on 135T1-weighted MRI scans and manual hippocampal labels from publicly available ADNI-HarP dataset demonstrated that the proposed HGM-cNet outperformed seven multi-atlas-based hippocampus segmentation methods and six deep learning methods under comparison in most evaluation metrics. The Dice (average > 0.89 for both left and right hippocampus) was increased by around or more than 1% over other methods. The HGM-cNet also achieved a superior hippocampus segmentation performance in each group of cognitive normal, mild cognitive impairment, and AD. The stability, conveniences and generalizability of the cascaded deep learning framework with integrated HGM probability map in improving hippocampus segmentation was validated by replacing the proposed CNN with 3D-UNet, Atten-UNet, HippoDeep, QuickNet, DeepHarp, and TransBTS models. The integration of the HGM probability map in the cascaded deep learning framework was also demonstrated to facilitate capturing hippocampal atrophy more accurately than alternative methods in AD analysis. The codes are publicly available at

Zheng Qiang, Liu Bin, Gao Yan, Bai Lijun, Cheng Yu, Li Honglun


Deep learning, Gray matter volume, Hippocampus, Image segmentation, Multi-atlas segmentation