Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Water research

Four different machine learning algorithms, including Decision Tree (DT), Random Forest (RF), Multivariable Linear Regression (MLR), Support Vector Regressions (SVR), and Gaussian Process Regressions (GPR), were applied to predict the performance of a multi-media filter operating as a function of raw water quality and plant operating variables. The models were trained using data collected over a seven year period covering water quality and operating variables, including true colour, turbidity, plant flow, and chemical dose for chlorine, KMnO4, FeCl3, and Cationic Polymer (PolyDADMAC). The machine learning algorithms have shown that the best prediction is at a 1-day time lag between input variables and unit filter run volume (UFRV). Furthermore, the RF algorithm with grid search using the input metrics mentioned above with a 1-day time lag has provided the highest reliability in predicting UFRV with a RMSE and R2 of 31.58 and 0.98, respectively. Similarly, RF with grid search has shown the shortest training time, prediction accuracy, and forecasting events using a ROC-AUC curve analysis (AUC over 0.8) in extreme wet weather events. Therefore, Random Forest with grid search and a 1-day time lag is an effective and robust machine learning algorithm that can predict the filter performance to aid water treatment operators in their decision makings by providing real-time warning of the potential turbidity breakthrough from the filters.

Moradi Sina, Omar Amr, Zhou Zhuoyu, Agostino Anthony, Gandomkar Ziba, Bustamante Heriberto, Power Kaye, Henderson Rita, Leslie Greg


Filtration performance, Hyper-parameter optimisation, Machine learning approach, Unit filter run volume