Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Clinical and molecular hepatology

BACKGROUND & AIMS : Patients with cirrhosis and hepatocellular carcinoma (HCC) require extensive and personalized care to improve outcomes. ChatGPT (Generative Pre-trained Transformer), a large language model, holds the potential to provide professional yet patient-friendly support. We aimed to examine the accuracy and reproducibility of ChatGPT in answering questions regarding knowledge, management, and emotional support for cirrhosis and HCC.

METHODS : ChatGPT's responses to 164 questions were independently graded by two transplant hepatologists and resolved by a third reviewer. The performance of ChatGPT was also assessed using two published questionnaires and 26 questions formulated from the quality measures of cirrhosis management. Finally, its emotional support capacity was tested.

RESULTS : We showed that ChatGPT regurgitated extensive knowledge of cirrhosis (79.1% correct) and HCC (74.0% correct), but only small proportions (47.3% in cirrhosis, 41.1% in HCC) were labeled as comprehensive. The performance was better in basic knowledge, lifestyle, and treatment than in the domains of diagnosis and preventive medicine. For the quality measures, the model answered 76.9% of questions correctly but failed to specify decision-making cut-offs and treatment durations. ChatGPT lacked knowledge of regional guidelines variations, such as HCC screening criteria. However, it provided practical and multifaceted advice to patients and caregivers regarding the next steps and adjusting to a new diagnosis.

CONCLUSIONS : We analyzed the areas of robustness and limitations of ChatGPT's responses on the management of cirrhosis and HCC and relevant emotional support. ChatGPT may have a role as an adjunct informational tool for patients and physicians to improve outcomes.

Yeo Yee Hui, Samaan Jamil S, Ng Wee Han, Ting Peng-Sheng, Trivedi Hirsh, Vipani Aarshi, Ayoub Walid, Yang Ju Dong, Liran Omer, Spiegel Brennan, Kuo Alexander


accuracy, artificial intelligence, health literacy, patient knowledge, reproducibility