Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In bioRxiv : the preprint server for biology

UNLABELLED : Recent advances have enabled high-quality computationally generated structures for proteins with no solved crystal structures. However, protein function data remains largely limited to experimental methods and homology mapping. Since structure determines function, it is natural that methods capable of using computationally generated structures for functional annotations need to be advanced. Our laboratory recently developed a method to distinguish between metalloenzyme and non-enzyme sites. Here we report improvements to this method by upgrading our physicochemical features to alleviate the need for structures with sub-angstrom precision and using machine learning to reduce training data labeling error. Our improved classifier identifies protein bound metal sites as enzymatic or non-enzymatic with 94% precision and 92% recall. We demonstrate that both adjustments increased predictive performance and reliability on sites with sub-angstrom variations. We constructed a set of predicted metalloprotein structures with no solved crystal structures and no detectable homology to our training data. Our model had an accuracy of 90 - 97.5% depending on the quality of the predicted structures included in our test. Finally, we found the physicochemical trends that drove this model's successful performance were local protein density, second shell ionizable residue burial, and the pocket's accessibility to the site. We anticipate that our model's ability to correctly identify catalytic metal sites could enable identification of new enzymatic mechanisms and improve de novo metalloenzyme design success rates.

SIGNIFICANCE STATEMENT : Identification of enzyme active sites on proteins with unsolved crystallographic structures can accelerate discovery of novel biochemical reactions, which can impact healthcare, industrial processes, and environmental remediation. Our lab has developed an ML tool for predicting sites on computationally generated protein structures as enzymatic and non-enzymatic. We have made our tool available on a webserver, allowing the scientific community to rapidly search previously unknown protein function space.

Feehan Ryan, Copeland Matthew, Franklin Meghan W, Slusky Joanna S G