Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Transplant immunology ; h5-index 20.0

INTRODUCTION : The pathogenesis and progression mechanism of Immunoglobulin A nephropathy (IgAN) is not fully understood. There is a lack of panoramic analysis of IgAN immune cell infiltration and algorithms that are more efficient and accurate for screening key pathogenic genes.

METHODS : RNA sequencing (RNA-seq) data sets on IgAN were downloaded from the Gene Expression Omnibus (GEO) database, including GSE93798, GSE35489, and GSE115857. The RNA-seq data set of kidney tissue as control samples were downloaded from the Genotype-Tissue Expression (GTEx) database. Three machine learning algorithms-weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and support vector machine-were used to identify the key pathogenic gene sets of the IgAN disease. The ssGSEA method was applied to calculate the immune cell infiltration (ICI) of IgAN samples, whereas the Spearman test was used for correlation analysis. The receiver operator characteristic curve (ROC) was used to evaluate the diagnostic efficacy of key genes. The correlation between the key genes and ICI was analyzed using the Spearman test.

RESULTS : A total of 177 genes were screened out as differentially expressed genes (DEGs) for IgAN, including 135 up-regulated genes and 42 down-regulated genes. The DEGs were significantly enriched in the inflammatory- or immune-related pathways (gene sets). Activating transcription factor 3 (AFT3), C-X-C Motif Chemokine Ligand 6 (CXCL6), and v-fos FBJ murine osteosarcoma viral oncogene homolog B (FOSB) were identified using WGCNA, support vector machine, and LASSO algorithms. These three genes revealed good diagnostic efficacy in the training and test cohorts. The CXCL6 expression positively correlated with activated B cells and memory B cells.

CONCLUSION : ATF3, FOSB, and CXCL6 genes were identified as potential biomarkers of IgAN. These three genes exhibited good diagnostic efficacy for IgAN. We described the landscape of immune cell infiltration for IgAN. Activated B cells and memory B cells were more highly expressed in the IgAN samples than in the control samples. CXCL6 seems crucial to the pathogenesis of IgAN and may induce IgAN by enriching immune cells. Our study may contribute to developing CXCL6 inhibitors that target B cells for IgAN therapy.

Chen Suzhi, Li Yongzhang, Wang Guangjian, Song Lei, Tan Jinchuan, Yang Fengwen


ATF3, CXLC6, FOSB, Immunoglobulin a nephropathy, Machine learning algorithm