Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of computer assisted tomography

OBJECTIVE : For compressed sensing (CS) to become widely used in routine magnetic resonance imaging (MRI), it is essential to improve image quality. This study aimed to evaluate the usefulness of combining CS and deep learning-based reconstruction (DLR) for various sequences in shoulder MRI.

METHODS : This retrospective study included 37 consecutive patients who underwent undersampled shoulder MRIs, including T1-weighted (T1WI), T2-weighted (T2WI), and fat-saturation T2-weighted (FS-T2WI) images. Images were reconstructed using the conventional wavelet-based denoising method (wavelet method) and a combination of wavelet and DLR-based denoising methods (hybrid-DLR method) for each sequence. The signal-to-noise ratio and contrast-to-noise ratio of the bone, muscle, and fat and the full width at half maximum of the shoulder joint were compared between the 2 image types. In addition, 2 board-certified radiologists scored the image noise, contrast, sharpness, artifacts, and overall image quality of the 2 image types on a 4-point scale.

RESULTS : The signal-to-noise ratios and contrast-to-noise ratios of the bone, muscle, and fat in T1WI, T2WI, and FS-T2WI obtained from the hybrid-DLR method were significantly higher than those of the conventional wavelet method (P < 0.001). However, there were no significant differences in the full width at half maximum of the shoulder joint in any of the sequences (P > 0.05). Furthermore, in all sequences, the mean scores of the image noise, sharpness, artifacts, and overall image quality were significantly higher in the hybrid-DLR method than in the wavelet method (P < 0.001), but there were no significant differences in contrast among the sequences (P > 0.05).

CONCLUSIONS : The DLR denoising method can improve the image quality of CS in T1-weighted images, T2-weighted images, and fat-saturation T2-weighted images of the shoulder compared with the wavelet denoising method alone.

Shiraishi Kaori, Nakaura Takeshi, Uetani Hiroyuki, Nagayama Yasunori, Kidoh Masafumi, Kobayashi Naoki, Morita Kosuke, Yamahita Yuichi, Miyamoto Takeshi, Hirai Toshinori

2023-Mar-09