Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The Science of the total environment

The utilization of carbon capture utilization and storage (CCUS) in unconventional formations is a promising way for improving hydrocarbon production and combating climate change. Shale wettability plays a crucial factor for successful CCUS projects. In this study, multiple machine learning (ML) techniques, including multilayer perceptron (MLP) and radial basis function neural networks (RBFNN), were used to evaluate shale wettability based on five key features, including formation pressure, temperature, salinity, total organic carbon (TOC), and theta zero. The data were collected from 229 datasets of contact angle in three states of shale/oil/brine, shale/CO2/brine, and shale/CH4/brine systems. Five algorithms were used to tune MLP, while three optimization algorithms were used to optimize the RBFNN computing framework. The results indicate that the RBFNN-MVO model achieved the best predictive accuracy, with a root mean square error (RMSE) value of 0.113 and an R2 of 0.999993. The sensitivity analysis showed that theta zero, TOC, pressure, temperature, and salinity were the most sensitive features. This research demonstrates the effectiveness of RBFNN-MVO model in evaluating shale wettability for CCUS initiatives and cleaner production.

Zhang Hemeng, Thanh Hung Vo, Rahimi Mohammad, Al-Mudhafar Watheq J, Tangparitkul Suparit, Zhang Tao, Dai Zhenxue, Ashraf Umar

2023-Mar-18

Artificial intelligence, CO(2) capture, Carbon storage, Contact angle measurement, Deep learning, Wettability behavior