Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Analytica chimica acta

High-risk human papillomavirus (HPV) testing can significantly decline the incidence and mortality of cervical cancer. Microfluidic technology provides an effective method for accurate detection of high-risk HPV by utilizing multiplex single-cell droplet polymerase chain reaction (PCR). However, current strategies are limited by low-integration microfluidic chip, complex reagent system, expensive detection equipment and time-consuming droplet identification. Here, we developed a novel multiplex droplet PCR method that directly detected high-risk HPV sequences in single cells. A multiplex microfluidic chip integrating four flow-focusing structures was designed for one-step and parallel droplet preparation. Using single-cell droplet PCR, multi-target sequences were detected simultaneously based on a monochromatic fluorescence signal. We applied machine learning to automatically identify the large populations of single-cell droplets with 97% accuracy. HPV16, 18 and 45 sequences were sensitively detected without cross-contamination in mixed CaSki and Hela cells. The approach enables rapid and reliable detection of multi-target sequences in single cells, making it powerful for investigating cellular heterogeneity related to cancer diagnosis and treatment.

Huang Yizheng, Sun Linjun, Liu Wenwen, Yang Ling, Song Zhigang, Ning Xin, Li Weijun, Tan Manqing, Yu Yude, Li Zhao

2023-Apr-29

High-risk HPV detection, Machine learning, Multiplex microfluidic chip, Single-cell droplet PCR