Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Food chemistry

Electrochemical methods have been extensively applied for the detection of chemical information from food or other analytes. However, existing electrochemical methods are limited to focusing solely on the absorption peaks and disregard much of the hidden chemical fingerprint information. Consequently, electrochemical sensors are constrained by their ability to detect samples containing multiple source-material mixtures with overlapping constituents. We hypothesized that the target substances can be effectively identified and detected using differential sensor data combined with artificial intelligence (AI). In this study, we developed a novel signal array composed of five metal electrodes and used a convolutional neural network (CNN) model for feature extraction to detect capsaicinoids in stews. Our results indicate that the proposed method achieved satisfactory predictions with a root mean square error (RMSE) of 5.407 in independent brine samples. This provides a promising strategy and practical approach for the nondestructive analysis of multidimensional electrochemical data of mixed analytes.

Xing Zheng, Jiang Ying, Zogona Daniel, Wu Ting, Xu Xiaoyun

2023-Mar-07

Capsaicinoids, Deep learning, Portable platform, Quantitative, Sensor arrays