Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Marine pollution bulletin

Oil spills are the main threats to marine and coastal environments. Due to the increase in the marine transportation and shipping industry, oil spills have increased in recent years. Moreover, the rapid spread of oil spills in open waters seriously affects the fragile marine ecosystem and creates environmental concerns. Effective monitoring, quick identification, and estimation of the volume of oil spills are the first and most crucial steps for a successful cleanup operation and crisis management. Remote Sensing observations, especially from Synthetic Aperture Radar (SAR) sensors, are a very suitable choice for this purpose due to their ability to collect data regardless of the weather and illumination conditions and over far and large areas of the Earth. Owing to the relatively complex nature of SAR observations, machine learning (ML) based algorithms play an important role in accurately detecting and monitoring oil spills and can significantly help experts in faster and more accurate detection. This paper uses SAR images from ESA's Copernicus Sentinel-1 satellite to detect and locate oil spills in open waters under different environmental conditions. To this end, a deep learning framework has been presented to identify oil spills automatically. The SAR images were segmented into two classes, the oil slick and the background, using convolutional neural networks (CNN) and vision transformers (ViT). Various scenarios for the proposed architecture were designed by placing ViT networks in different parts of the CNN backbone. An extensive dataset of oil spill events in various regions across the globe was used to train and assess the performance of the proposed framework. After the detection performance assessments, the F1-score values for the standard DeepLabV3+, FC-DenseNet, and U-Net networks were 75.08 %, 73.94 %, and 60.85, respectively. In the combined networks models (combination of CNN and ViT), the best F1-score results were obtained as 78.48 %. Our results showed that these hybrid models could improve detection accuracy and have a high ability to distinguish oil spill borders even in noisy images. Evaluation metrics are increased in all the combined networks compared to the original CNN networks.

Dehghani-Dehcheshmeh Saeid, Akhoondzadeh Mehdi, Homayouni Saeid

2023-Mar-17

Deep convolutional neural networks, Oil spill detection, Synthetic aperture radar, Vision transformers