Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computer methods and programs in biomedicine

PURPOSE : Cerebrovascular segmentation from time-of-flight magnetic resonance angiography (TOF-MRA) is important but challenging for the simulation and measurement of cerebrovascular diseases. Recently, deep learning has promoted the rapid development of cerebrovascular segmentation. However, model optimization relies on voxel or regional punishment and lacks global awareness and interpretation from the texture and edge. To overcome the limitations of the existing methods, we propose a new cerebrovascular segmentation method to obtain more refined structures.

METHODS : In this paper, we propose a new adversarial model that achieves segmentation using segmentation model and filters the results using discriminator. Considering the sample imbalance in cerebrovascular imaging, we separated the TOF-MRA images and utilized high- and low-frequency images to enhance the texture and edge representation. The encoder weight sharing from the segmentation model not only saves the model parameters, but also strengthens the integration and separation correlation. Diversified discrimination enhances the robustness and regularization of the model.

RESULTS : The adversarial model was tested using two cerebrovascular datasets. It scored 82.26% and 73.38%, respectively, ranking first on both datasets. The results show that our method not only outperforms the recent cerebrovascular segmentation model, but also surpasses the common adversarial models.

CONCLUSION : Our adversarial model focuses on improving the extraction ability of the model on texture and edge, thereby achieving awareness of the global cerebrovascular topology. Therefore, we obtained an accurate and robust cerebrovascular segmentation. This framework has potential applications in many imaging fields, particularly in the application of sample imbalance. Our code is available at the website https://github.com/MontaEllis/ISA-model.

Chen Cheng, Zhou Kangneng, Lu Tong, Ning Huansheng, Xiao Ruoxiu

2023-Mar-11

Adversarial model, Cerebrovascular segmentation, Deep learning, TOF-MRA