Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Scientific reports ; h5-index 158.0

Artificial intelligence as a screening tool for eyelid lesions will be helpful for early diagnosis of eyelid malignancies and proper decision-making. This study aimed to evaluate the performance of a deep learning model in differentiating eyelid lesions using clinical eyelid photographs in comparison with human ophthalmologists. We included 4954 photographs from 928 patients in this retrospective cross-sectional study. Images were classified into three categories: malignant lesion, benign lesion, and no lesion. Two pre-trained convolutional neural network (CNN) models, DenseNet-161 and EfficientNetV2-M architectures, were fine-tuned to classify images into three or two (malignant versus benign) categories. For a ternary classification, the mean diagnostic accuracies of the CNNs were 82.1% and 83.0% using DenseNet-161 and EfficientNetV2-M, respectively, which were inferior to those of the nine clinicians (87.0-89.5%). For the binary classification, the mean accuracies were 87.5% and 92.5% using DenseNet-161 and EfficientNetV2-M models, which was similar to that of the clinicians (85.8-90.0%). The mean AUC of the two CNN models was 0.908 and 0.950, respectively. Gradient-weighted class activation map successfully highlighted the eyelid tumors on clinical photographs. Deep learning models showed a promising performance in discriminating malignant versus benign eyelid lesions on clinical photographs, reaching the level of human observers.

Lee Min Joung, Yang Min Kyu, Khwarg Sang In, Oh Eun Kyu, Choi Youn Joo, Kim Namju, Choung Hokyung, Seo Chang Won, Ha Yun Jong, Cho Min Ho, Cho Bum-Joo

2023-Mar-13