Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Quantitative imaging in medicine and surgery

BACKGROUND : The cerebellum and cerebral cortex form the most important cortico-cerebellar system in the brain. However, diffusion magnetic resonance imaging (MRI)-based tractography of the connecting white matter between the cerebellum and cerebral cortex, which support language function, has not been extensively reported on. This work aims to serve as a guideline for facilitating the analysis of white matter tracts along the language-related cerebro-cerebellar pathway (LRCCP), which includes the corticopontine, pontocerebellar, corticorubral, rubroolivary, olivocerebellar, and dentatorubrothalamic tracts.

METHODS : The LRCCP templates were developed via processing the high-resolution, population-averaged atlas available in the Human Connectome Project (HCP)-1065 dataset (2017 Q4, 1,200-subject release) in DSI Studio. The deterministic tracking was performed with the manually selected regions of interest (ROIs) on this atlas according to prior anatomic knowledge. Templates were then applied to the MRI datasets of 30 health participants acquired from a single hospital to verify the practicability of the tracking. The diffusion tensor and shape analysis metrics were calculated for all LRCCP tracts. Differences in the tracking metrics between the left and right hemispheres were compared, and the related white matter asymmetry was discussed.

RESULTS : The LRCCP templates were successfully created and applied to healthy participants for quantitative analysis. Significantly higher mean fractional anisotropy (FA) values were discovered on the left (L) corticorubral tract [L, 0.43±0.02 vs. right (R), 0.41±0.02; P<0.01] and left dentatorubrothalamic tract (L, 0.47±0.02 vs. R, 0.46±0.02; P<0.01). Significant differences in tract volume and streamline number were observed between the corticopontine, corticorubral, and dentatorubrothalamic tracts. The size of the right corticopontine and corticorubral tracts were smaller, and both had smaller streamline numbers and innervation areas when compared with the contralateral sides. The R dentatorubrothalamic tract showed a larger volume (R, 23,582.47±4,160.71 mm3 vs. L, 19,821.27±2,983.91 mm3; P<0.01) and innervation area (R, 2,117.37±433.98 mm2 vs. L, 1,610.00±356.19 mm2; P<0.01) than did the L side. No significant differences were observed in the rubroolivary tracts.

CONCLUSIONS : This work suggests the feasibility of applying tractography templates of the LRCCP to quantitatively evaluate white matter properties associated with language function. Lateralized diffusion metrics were observed in preliminary experiments. LRCCP tractography-based research may provide a potential quantitative method to better understanding neuroplasticity.

Yin Hu, Zong Fangrong, Deng Xiaofeng, Zhang Dong, Zhang Yan, Wang Shuo, Wang Yu, Zhao Jizong

2023-Mar-01

Diffusion magnetic resonance imaging, cerebellum, language, shape analysis, tractography, white matter asymmetry