In Frontiers in human neuroscience ; h5-index 79.0
Multiple sclerosis (MS) is a neurological chronic disease with autoimmune demyelinating lesions and one of the most common disability causes in young adults. People with MS (PwMS) experience cognitive impairments (CIs) and clinical evidence shows their presence during all MS stages even in the absence of other symptoms. Cognitive rehabilitation (CR) aims at reducing CI and improving PwMS' awareness of cognitive difficulties faced in their daily living. More defined cognitive profiles, easier treatment access and the need to transfer intervention effects into everyday life activities are aims of utmost relevance for CR in MS. Currently, advanced technologies may pave the way to rethink CR in MS to address the priority of more personalized and effective, accessible and ecological interventions. For this purpose, digital twins, tele-cognitive-rehabilitation and metaverse are the main candidate digital ingredients. Based on scientific evidences, we propose digital twin technology to enhance MS cognitive phenotyping; tele-cognitive-rehabilitation to make feasible the cognitive intervention access to a larger number of PwMS; and metaverse to represent the best choice to train real-world dual- and multi-tasking deficits in virtual daily life environments. Moreover, multi-domain high-frequency big-data collected through tele-cognitive-assessment, tele-cognitive-rehabilitation, and metaverse may be merged to refine artificial intelligence algorithms and obtain increasingly detailed patient's cognitive profile in order to enhance intervention personalization. Here, we present how these digital ingredients and their integration could be crucial to address the current and future needs of CR facilitating the early detection of subtle CI and the delivery of increasingly effective treatments.
Tacchino Andrea, Podda Jessica, Bergamaschi Valeria, PedullĂ Ludovico, Brichetto Giampaolo
2023
cognitive deficit, cognitive disorder, cognitive impairment, digital twin, dual-task, metaverse, multiple sclerosis, telerehabilitation