In Autism research : official journal of the International Society for Autism Research
Autism is a lifelong condition for which intervention must occur as early as possible to improve social functioning. Thus, there is great interest in improving our ability to diagnose autism as early as possible. We take a novel approach to this challenge by combining machine learning with maternal and infant health administrative data to construct a prediction model capable of predicting autism disorder (defined as ICD10 84.0) in the general population. The sample included all mother-offspring pairs from the Australian state of New South Wales (NSW) between January 2003 and December 2005 (n = 262,650 offspring), linked across three health administrative data sets including the NSW perinatal data collection (PDC); the NSW admitted patient data collection (APDC) and the NSW mental health ambulatory data collection (MHADC). Our most successful model was able to predict autism disorder with an area under the receiver operating curve of 0.73, with the strongest risk factors for diagnoses found to include offspring gender, maternal age at birth, delivery analgesia, maternal prenatal tobacco disorders, and low 5-min APGAR score. Our findings indicate that the combination of machine learning and routinely collected admin data, with further refinement and increased accuracy than achieved by us, may play a role in the early detection of autism disorders.
Betts Kim Steven, Chai Kevin, Kisely Steve, Alati Rosa
2023-Mar-10
administrative data linkage, autism, machine learning, predictive models