Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

International Conference on Technologies and Applications of Artificial Intelligence (TAAI). 2022;143-148

During the patient's hospitalization, the physician must record daily observations of the patient and summarize them into a brief document called "discharge summary" when the patient is discharged. Automated generation of discharge summary can greatly relieve the physicians' burden, and has been addressed recently in the research community. Most previous studies of discharge summary generation using the sequence-to-sequence architecture focus on only inpatient notes for input. However, electric health records (EHR) also have rich structured metadata (e.g., hospital, physician, disease, length of stay, etc.) that might be useful. This paper investigates the effectiveness of medical meta-information for summarization tasks. We obtain four types of meta-information from the EHR systems and encode each meta-information into a sequence-to-sequence model. Using Japanese EHRs, meta-information encoded models increased ROUGE-1 by up to 4.45 points and BERTScore by 3.77 points over the vanilla Longformer. Also, we found that the encoded meta-information improves the precisions of its related terms in the outputs. Our results showed the benefit of the use of medical meta-information.

Kenichiro Ando, Mamoru Komachi, Takashi Okumura, Hiromasa Horiguchi, Yuji Matsumoto

2023-03-10