Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Applied clinical informatics ; h5-index 22.0

BACKGROUND : Patient cohorts generated by machine learning can be enhanced with clinical knowledge to increase translational value and provide a practical approach to patient segmentation based on a mix of medical, behavioral, and social factors.

OBJECTIVES : To generate a pragmatic example of how machine learning could be used to quickly and meaningfully cohort patients using unsupervised classification methods. Additionally, to demonstrate increased translational value of machine learning models through the integration of nursing knowledge.

METHODS : A primary care practice dataset (N=3438) of high need patients defined by practice criteria was parsed to a subset population of patients with diabetes (n=1233). Three expert nurses selected variables for k-means cluster analysis using knowledge of critical factors for care coordination. Nursing knowledge was again applied to describe the psychosocial phenotypes in four prominent clusters, aligned with social and medical care plans.

RESULTS : Four distinct clusters interpreted and mapped to psychosocial need profiles, allowing for immediate translation to clinical practice through the creation of actionable social and medical care plans. (1) A large cluster of racially diverse female, non-English speakers with low medical complexity, and history of childhood illness; (2) A large cluster of English speakers with significant comorbidities (obesity and respiratory disease); (3) A small cluster of males with substance use disorder and significant comorbidities (mental health, liver and cardiovascular disease) who frequently visit the hospital; and (4) A moderate cluster of older, racially diverse patients with renal failure.

CONCLUSIONS : This manuscript provides a practical method for analysis of primary care practice data using machine learning in tandem with expert clinical knowledge.   Keywords: Social determinants of health; phenotypes; primary care; nursing; ambulatory care information systems; machine learning; care coordination; provider- provider communication; knowledge translation.

Hewner Sharon, Smith Erica, Sullivan Suzanne S

2023-Mar-07