Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in neuroscience ; h5-index 72.0

Increasing complexity and data-generation rates in cyber-physical systems and the industrial Internet of things are calling for a corresponding increase in AI capabilities at the resource-constrained edges of the Internet. Meanwhile, the resource requirements of digital computing and deep learning are growing exponentially, in an unsustainable manner. One possible way to bridge this gap is the adoption of resource-efficient brain-inspired "neuromorphic" processing and sensing devices, which use event-driven, asynchronous, dynamic neurosynaptic elements with colocated memory for distributed processing and machine learning. However, since neuromorphic systems are fundamentally different from conventional von Neumann computers and clock-driven sensor systems, several challenges are posed to large-scale adoption and integration of neuromorphic devices into the existing distributed digital-computational infrastructure. Here, we describe the current landscape of neuromorphic computing, focusing on characteristics that pose integration challenges. Based on this analysis, we propose a microservice-based conceptual framework for neuromorphic systems integration, consisting of a neuromorphic-system proxy, which would provide virtualization and communication capabilities required in distributed systems of systems, in combination with a declarative programming approach offering engineering-process abstraction. We also present concepts that could serve as a basis for the realization of this framework, and identify directions for further research required to enable large-scale system integration of neuromorphic devices.

Nilsson Mattias, Schelén Olov, Lindgren Anders, Bodin Ulf, Paniagua Cristina, Delsing Jerker, Sandin Fredrik

2023

edge intelligence, event-driven systems, extreme heterogeneity, interoperability, microservices, neuromorphic computing, non-von Neumann, system integration