In Journal of X-ray science and technology
BACKGROUND : COVID-19 is the most dangerous virus, and its accurate diagnosis saves lives and slows its spread. However, COVID-19 diagnosis takes time and requires trained professionals. Therefore, developing a deep learning (DL) model on low-radiated imaging modalities like chest X-rays (CXRs) is needed.
OBJECTIVE : The existing DL models failed to diagnose COVID-19 and other lung diseases accurately. This study implements a multi-class CXR segmentation and classification network (MCSC-Net) to detect COVID-19 using CXR images.
METHODS : Initially, a hybrid median bilateral filter (HMBF) is applied to CXR images to reduce image noise and enhance the COVID-19 infected regions. Then, a skip connection-based residual network-50 (SC-ResNet50) is used to segment (localize) COVID-19 regions. The features from CXRs are further extracted using a robust feature neural network (RFNN). Since the initial features contain joint COVID-19, normal, pneumonia bacterial, and viral properties, the conventional methods fail to separate the class of each disease-based feature. To extract the distinct features of each class, RFNN includes a disease-specific feature separate attention mechanism (DSFSAM). Furthermore, the hunting nature of the Hybrid whale optimization algorithm (HWOA) is used to select the best features in each class. Finally, the deep-Q-neural network (DQNN) classifies CXRs into multiple disease classes.
RESULTS : The proposed MCSC-Net shows the enhanced accuracy of 99.09% for 2-class, 99.16% for 3-class, and 99.25% for 4-class classification of CXR images compared to other state-of-art approaches.
CONCLUSION : The proposed MCSC-Net enables to conduct multi-class segmentation and classification tasks applying to CXR images with high accuracy. Thus, together with gold-standard clinical and laboratory tests, this new method is promising to be used in future clinical practice to evaluate patients.
Deepak Gerard, Madiajagan M, Kulkarni Sanjeev, Ahmed Ahmed Najat, Gopatoti Anandbabu, Ammisetty Veeraswamy
2023-Feb-28
COVID-19, chest X-Ray, deep-Q-neural networks, hybrid median bilateral filter, robust feature neural network