Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In ACS applied electronic materials

Recent advances in wearable technologies have enabled ways for people to interact with external devices, known as human-machine interfaces (HMIs). Among them, electrooculography (EOG), measured by wearable devices, is used for eye movement-enabled HMI. Most prior studies have utilized conventional gel electrodes for EOG recording. However, the gel is problematic due to skin irritation, while separate bulky electronics cause motion artifacts. Here, we introduce a low-profile, headband-type, soft wearable electronic system with embedded stretchable electrodes, and a flexible wireless circuit to detect EOG signals for persistent HMIs. The headband with dry electrodes is printed with flexible thermoplastic polyurethane. Nanomembrane electrodes are prepared by thin-film deposition and laser cutting techniques. A set of signal processing data from dry electrodes demonstrate successful real-time classification of eye motions, including blink, up, down, left, and right. Our study shows that the convolutional neural network performs exceptionally well compared to other machine learning methods, showing 98.3% accuracy with six classes: the highest performance till date in EOG classification with only four electrodes. Collectively, the real-time demonstration of continuous wireless control of a two-wheeled radio-controlled car captures the potential of the bioelectronic system and the algorithm for targeting various HMI and virtual reality applications.

Ban Seunghyeb, Lee Yoon Jae, Kwon Shinjae, Kim Yun-Soung, Chang Jae Won, Kim Jong-Hoon, Yeo Woon-Hong

2023-Feb-28