Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The European physical journal. E, Soft matter

In this work, we explore the possibility of learning from data collision operators for the Lattice Boltzmann Method using a deep learning approach. We compare a hierarchy of designs of the neural network (NN) collision operator and evaluate the performance of the resulting LBM method in reproducing time dynamics of several canonical flows. In the current study, as a first attempt to address the learning problem, the data were generated by a single relaxation time BGK operator. We demonstrate that vanilla NN architecture has very limited accuracy. On the other hand, by embedding physical properties, such as conservation laws and symmetries, it is possible to dramatically increase the accuracy by several orders of magnitude and correctly reproduce the short and long time dynamics of standard fluid flows.

Corbetta Alessandro, Gabbana Alessandro, Gyrya Vitaliy, Livescu Daniel, Prins Joost, Toschi Federico

2023-Mar-06