Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in neurorobotics

Lidar-based 3D object detection and classification is a critical task for autonomous driving. However, inferencing from exceedingly sparse 3D data in real-time is a formidable challenge. Complex-YOLO solves the problem of point cloud disorder and sparsity by projecting it onto the bird's-eye view and realizes real-time 3D object detection based on LiDAR. However, Complex-YOLO has no object height detection, a shallow network depth, and poor small-size object detection accuracy. To address these issues, this paper has made the following improvements: (1) adds a multi-scale feature fusion network to improve the algorithm's capability to detect small-size objects; (2) uses a more advanced RepVGG as the backbone network to improve network depth and overall detection performance; and (3) adds an effective height detector to the network to improve the height detection. Through experiments, we found that our algorithm's accuracy achieved good performance on the KITTI dataset, while the detection speed and memory usage were very superior, 48FPS on RTX3070Ti and 20FPS on GTX1060, with a memory usage of 841Mib.

Shao Yongxin, Sun Zhetao, Tan Aihong, Yan Tianhong

2023

3D object detection, deep learning, neural network, object detection, point cloud