Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of applied clinical medical physics ; h5-index 28.0

Contouring has become an increasingly important aspect of radiotherapy due to inverse planning. Several studies have suggested that the clinical implementation of automated contouring tools can reduce inter-observer variation while increasing contouring efficiency, thereby improving the quality of radiotherapy treatment and reducing the time between simulation and treatment. In this study, a novel, commercial automated contouring tool based on machine learning, the AI-Rad Companion Organs RT™ (AI-Rad) software (Version VA31) (Siemens Healthineers, Munich, Germany), was assessed against both manually delineated contours and another commercially available automated contouring software, Varian Smart Segmentation™ (SS) (Version 16.0) (Varian, Palo Alto, CA, United States). The quality of contours generated by AI-Rad in Head and Neck (H&N), Thorax, Breast, Male Pelvis (Pelvis_M), and Female Pelvis (Pevis_F) anatomical areas was evaluated both quantitatively and qualitatively using several metrics. A timing analysis was subsequently performed to explore potential time savings achieved by AI-Rad. Results showed that most automated contours generated by AI-Rad were not only clinically acceptable and required minimal editing, but also superior in quality to contours generated by SS in multiple structures. In addition, timing analysis favored AI-Rad over manual contouring, indicating the largest time saving (753s per patient) in the Thorax area. AI-Rad was concluded to be a promising automated contouring solution that generated clinically acceptable contours and achieved time savings, thereby greatly benefiting the radiotherapy process.

Hu Yunfei, Nguyen Huong, Smith Claire, Chen Tom, Byrne Mikel, Archibald-Heeren Ben, Rijken James, Aland Trent

2023-Mar-04

automated contouring, efficiency and quality, machine learning, radiotherapy planning