Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Bioresource technology

In recent years, the digital transformation of bioprocesses, which focuses on interconnectivity, online monitoring, process automation, artificial intelligence (AI) and machine learning (ML), and real-time data acquisition, has gained considerable attention. AI can systematically analyze and forecast high-dimensional data obtained from the operating dynamics of bioprocess, allowing for precise control and synchronization of the process to improve performance and efficiency. Data-driven bioprocessing is a promising technology for tackling emerging challenges in bioprocesses, such as resource availability, parameter dimensionality, nonlinearity, risk mitigation, and complex metabolisms. This special issue entitled "Machine Learning for Smart Bioprocesses (MLSB-2022)" was conceptualized to incorporate some of the recent advances in applications of emerging tools such as ML and AI in bioprocesses. This VSI: MLSB-2022 contains 23 manuscripts, and summarizes the major findings that can serve as a valuable resource for researchers to learn major advances in applications of ML and AI in bioprocesses.

Khanal Samir Kumar, Tarafdar Ayon, You Siming

2023-Mar-03

Artificial intelligence, Digital transformation, Hybrid modeling, Machine learning, Smart bioprocess