Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Laboratory investigation; a journal of technical methods and pathology ; h5-index 42.0

A morphologic examination is essential for the diagnosis of hematological diseases. However, its conventional manual operation is time-consuming and laborious. Herein, we attempt to establish an artificial intelligence (AI)-aided diagnostic framework integrating medical expertise. This framework acts as a virtual hematological morphologist (VHM) for diagnosing hematological neoplasms. Two datasets were established as follows: An image dataset was used to train the Faster Region-based Convolutional Neural Network to develop an image-based morphologic feature extraction model. A case dataset containing retrospective morphologic diagnostic data was used to train a support vector machine algorithm to develop a feature-based case identification model based on diagnostic criteria. Integrating these 2 models established a whole-process AI-aided diagnostic framework, namely, VHM, and a 2-stage strategy was applied to practice case diagnosis. The recall and precision of VHM in bone marrow cell classification were 94.65% and 93.95%, respectively. The balanced accuracy, sensitivity, and specificity of VHM were 97.16%, 99.09%, and 92%, respectively, in the differential diagnosis of normal and abnormal cases, and 99.23%, 97.96%, and 100%, respectively, in the precise diagnosis of chronic myelogenous leukemia in chronic phase. This work represents the first attempt, to our knowledge, to extract multimodal morphologic features and to integrate a feature-based case diagnosis model for designing a comprehensive AI-aided morphologic diagnostic framework. The performance of our knowledge-based framework was superior to that of the widely used end-to-end AI-based diagnostic framework in terms of testing accuracy (96.88% vs 68.75%) or generalization ability (97.11% vs 68.75%) in differentiating normal and abnormal cases. The remarkable advantage of VHM is that it follows the logic of clinical diagnostic procedures, making it a reliable and interpretable hematological diagnostic tool.

Li Nan, Fan Liquan, Xu Hang, Zhang Xiwen, Bai Zanzhou, Li Miaohui, Xiong Shumin, Jiang Lu, Yang Jie, Chen Saijuan, Qiao Yu, Chen Bing

2023-Jan-10

artificial intelligence, bone marrow morphology, diagnosis, hematology, multimodal features