In Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES : The application of intelligent imaging techniques and deep learning in the field of computer-aided diagnosis and medical imaging have improved and accelerated the early diagnosis of many diseases. Elastography is an imaging modality where an inverse problem is solved to extract the elastic properties of tissues and subsequently mapped to anatomical images for diagnostic purposes. In the present work, we propose a wavelet neural operator-based approach for correctly learning the non-linear mapping of elastic properties directly from measured displacement field data.
METHODS : The proposed framework learns the underlying operator behind the elastic mapping and thus can map any displacement data from a family to the elastic properties. The displacement fields are first uplifted to a high-dimensional space using a fully connected neural network. On the lifted data, certain iterations are performed using wavelet neural blocks. In each wavelet neural block, the lifted data are decomposed into low, and high-frequency components using wavelet decomposition. To learn the most relevant patterns and structural information from the input, the neural network kernels are directly convoluted with the outputs of the wavelet decomposition. Thereafter the elasticity field is reconstructed from the outputs from convolution. The mapping between the displacement and the elasticity using wavelets is unique and remains stable during training.
RESULTS : The proposed framework is tested on several artificially fabricated numerical examples, including a benign-cum-malignant tumor prediction problem. The trained model was also tested on real Ultrasound-based elastography data to demonstrate the applicability of the proposed scheme in clinical usage. The proposed framework reproduces the highly accurate elasticity field directly from the displacement inputs.
CONCLUSIONS : The proposed framework circumvents different data pre-processing and intermediate steps utilized in traditional methods, hence providing an accurate elasticity map. The computationally efficient framework requires fewer epochs for training, which bodes well for its clinical usability for real-time predictions. The weights and biases from pre-trained models can also be employed for transfer learning, which reduces the effective training time with random initialization.
Tripura Tapas, Awasthi Abhilash, Roy Sitikantha, Chakraborty Souvik
2023-Feb-24
Elastography, Inverse problems, Nonlinear mappings, Operator learning, Scientific machine learning