In Annals of nuclear medicine
OBJECTIVE : Osseous metastasis (OM) is the second most common site of thyroid cancer distant metastasis and presents a poor prognosis. Accurate prognostic estimation for OM has clinical significance. Ascertain the risk factors for survival and develop an effective model to predict the 3-year, 5-year overall survival (OS) and cancer-specific survival (CSS) for thyroid cancer patients with OM.
METHODS : We retrieved the information of patients with OMs between 2010 and 2016 from the Surveillance, Epidemiology, and End Result Program. The Chi-square test, and univariate and multivariate Cox regression analyses were performed. Four machine learning (ML) algorithms, which were most commonly used in this field, were applied.
RESULT : A total of 579 patients having OMs were eligible. Advanced age, tumor size ≥ 40 mm, combined with other distant metastasis were associated with worse OS in DTC OMs patients. Radioactive iodine (RAI) significantly improved CSS in both males and females. Among four ML models [logistic regression, support vector machines, extreme gradient boosting, and random forest (RF)], RF had the best performance [area under the receiver-operating characteristic curve: 0.9378 for 3-year CSS, 0.9105 for 5-year CSS, 0.8787 for 3-year OS, 0.8909 for 5-year OS]. The accuracy and specificity of RF were also the best.
CONCLUSIONS : RF model shall be used to establish an accurate prognostic model for thyroid cancer patients with OM, not only from the SEER cohort but also intended for all thyroid cancer patients in the general population, which may be applicable in clinical practice in the future.
Shi Wanying, Wu Weiming, Zhang Luyang, Jia Qiang, Tan Jian, Zheng Wei, Li Ning, Xu Ke, Meng Zhaowei
2023-Mar-03
Machine learning (ML), Osseous metastases (OMs), Radioactive iodine (RAI), Random forest (RF), Surveillance, Survival, Thyroid carcinoma (TC)