Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

Recognizing the types of white blood cells (WBCs) in microscopic images of human blood smears is a fundamental task in the fields of pathology and hematology. Although previous studies have made significant contributions to the development of methods and datasets, few papers have investigated benchmarks or baselines that others can easily refer to. For instance, we observed notable variations in the reported accuracies of the same Convolutional Neural Network (CNN) model across different studies, yet no public implementation exists to reproduce these results. In this paper, we establish a benchmark for WBC recognition. Our results indicate that CNN-based models achieve high accuracy when trained and tested under similar imaging conditions. However, their performance drops significantly when tested under different conditions. Moreover, the ResNet classifier, which has been widely employed in previous work, exhibits an unreasonably poor generalization ability under domain shifts due to batch normalization. We investigate this issue and suggest some alternative normalization techniques that can mitigate it. We make fully-reproducible code publicly available\footnote{\url{https://github.com/apple2373/wbc-benchmark}}.

Satoshi Tsutsui, Zhengyang Su, Bihan Wen

2023-03-03