In Environmental science and pollution research international
The demands upon the arid area for water supply pose threats to both the quantity and quality of social and economic activities. Thus, a widely used machine learning model, namely the support vector machines (SVM) integrated with water quality indices (WQI), was used to assess the groundwater quality. The predictive ability of the SVM model was assessed using a field dataset for groundwater from Abu-Sweir and Abu-Hammad, Ismalia, Egypt. Multiple water quality parameters were chosen as independent variables to build the model. The results revealed that the permissible and unsuitable class values range from 36 to 27%, 45 to 36%, and 68 to 15% for the WQI approach, SVM method and SVM-WQI model respectively. Besides, the SVM-WQI model shows a low percentage of the area for excellent class compared to the SVM model and WQI. The SVM model trained with all predictors with a mean square error (MSE) of 0.002 and 0.41; the models that had higher accuracy reached 0.88. Moreover, the study highlighted that SVM-WQI can be successfully implemented for the assessment of groundwater quality (0.90 accuracy). The resulting groundwater model in the study sites indicates that the groundwater is influenced by rock-water interaction and the effect of leaching and dissolution. Overall, the integrated ML model and WQI give an understanding of water quality assessment, which may be helpful in the future development of such areas.
Abu El-Magd Sherif Ahmed, Ismael Ismael S, El-Sabri Mohamed A Sh, Abdo Mohamed Sayed, Farhat Hassan I
2023-Mar-03
Egypt, Machine learning model (ML), SVM, SVM-WQI, WQI