Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Communications biology

Automated cell segmentation from optical microscopy images is usually the first step in the pipeline of single-cell analysis. Recently, deep-learning based algorithms have shown superior performances for the cell segmentation tasks. However, a disadvantage of deep-learning is the requirement for a large amount of fully annotated training data, which is costly to generate. Weakly-supervised and self-supervised learning is an active research area, but often the model accuracy is inversely correlated with the amount of annotation information provided. Here we focus on a specific subtype of weak annotations, which can be generated programmably from experimental data, thus allowing for more annotation information content without sacrificing the annotation speed. We designed a new model architecture for end-to-end training using such incomplete annotations. We have benchmarked our method on a variety of publicly available datasets, covering both fluorescence and bright-field imaging modality. We additionally tested our method on a microscopy dataset generated by us, using machine-generated annotations. The results demonstrated that our models trained under weak supervision can achieve segmentation accuracy competitive to, and in some cases, surpassing, state-of-the-art models trained under full supervision. Therefore, our method can be a practical alternative to the established full-supervision methods.

Shrestha Prem, Kuang Nicholas, Yu Ji

2023-Mar-02