IEEE Transactions on Evolutionary Computation, vol. 27, no. 1, pp.
52-66, Feb. 2023
One of the main obstacles of adopting digital pathology is the challenge of
efficient processing of hyperdimensional digitized biopsy samples, called whole
slide images (WSIs). Exploiting deep learning and introducing compact WSI
representations are urgently needed to accelerate image analysis and facilitate
the visualization and interpretability of pathology results in a postpandemic
world. In this paper, we introduce a new evolutionary approach for WSI
representation based on large-scale multi-objective optimization (LSMOP) of
deep embeddings. We start with patch-based sampling to feed KimiaNet , a
histopathology-specialized deep network, and to extract a multitude of feature
vectors. Coarse multi-objective feature selection uses the reduced search space
strategy guided by the classification accuracy and the number of features. In
the second stage, the frequent features histogram (FFH), a novel WSI
representation, is constructed by multiple runs of coarse LSMOP. Fine
evolutionary feature selection is then applied to find a compact (short-length)
feature vector based on the FFH and contributes to a more robust deep-learning
approach to digital pathology supported by the stochastic power of evolutionary
algorithms. We validate the proposed schemes using The Cancer Genome Atlas
(TCGA) images in terms of WSI representation, classification accuracy, and
feature quality. Furthermore, a novel decision space for multicriteria decision
making in the LSMOP field is introduced. Finally, a patch-level visualization
approach is proposed to increase the interpretability of deep features. The
proposed evolutionary algorithm finds a very compact feature vector to
represent a WSI (almost 14,000 times smaller than the original feature vectors)
with 8% higher accuracy compared to the codes provided by the state-of-the-art
methods.
Azam Asilian Bidgoli, Shahryar Rahnamayan, Taher Dehkharghanian, Abtin Riasatian, H. R. Tizhoosh
2023-03-02