Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The Journal of supercomputing

Analyzing time-dependent data acquired in a continuous flow is a major challenge for various fields, such as big data and machine learning. Being able to analyze a large volume of data from various sources, such as sensors, networks, and the internet, is essential for improving the efficiency of our society's production processes. Additionally, this vast amount of data is collected dynamically in a continuous stream. The goal of this research is to provide a comprehensive framework for forecasting big data streams from Internet of Things networks and serve as a guide for designing and deploying other third-party solutions. Hence, a new framework for time series forecasting in a big data streaming scenario, using data collected from Internet of Things networks, is presented. This framework comprises of five main modules: Internet of Things network design and deployment, big data streaming architecture, stream data modeling method, big data forecasting method, and a comprehensive real-world application scenario, consisting of a physical Internet of Things network feeding the big data streaming architecture, being the linear regression the algorithm used for illustrative purposes. Comparison with other frameworks reveals that this is the first framework that incorporates and integrates all the aforementioned modules.

Fernández-Gómez Antonio M, Gutiérrez-Avilés David, Troncoso Alicia, Martínez-Álvarez Francisco

2023-Feb-21

Big data, IoT, Streaming analysis, Time series