Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in neurorobotics

Current wireless-inertial fusion positioning systems widely adopt empirical propagation models of wireless signals and filtering algorithms such as the Kalman filter or the particle filter. However, empirical models of system and noise usually have lower accuracy in a practical positioning scenario. The biases of predetermined parameters would enlarge the positioning error through layers of systems. Instead of dealing with empirical models, this paper proposes a fusion positioning system based on an end-to-end neural network, along with a transfer learning strategy for improving the performance of neural network models for samples with different distributions. Verified by Bluetooth-inertial positioning in a whole floor scenario, the mean positioning error of the fusion network was 0.506 m. The proposed transfer learning method improved the accuracy of the step length and rotation angle of different pedestrians by 53.3%, the Bluetooth positioning accuracy of various devices by 33.4%, and the average positioning error of the fusion system by 31.6%. The results showed that our proposed methods outperformed filter-based methods in challenging indoor environments.

Hua Luchi, Zhuang Yuan, Yang Jun

2023

Kalman filter, deep learning, indoor positioning, transfer learning, wireless positioning